На главную К списку выставокАрхив выставок

Реакции тетрахлорида циркония с CO2 и органическими лигандами (нитрилами, изо(тио)цианатами, карбодиимидами)

Журнальные статьи

1. U14075
Aharonovich S. et al. Chemoselectivity Diversity in the Reaction of LiNC6F5SiMe3 with Nitriles and the Synthesis, Structure, and Reactivity of Zirconium Mono- and Tris[2-(2-pyridyl)tetrafluorobenzimidazolate] Complexes // Inorg. Chem. 2010. Vol. 49, № 20. P. 9217–9229.

Unlike the reaction of LiNTMS2·TMEDA (TMS = SiMe3; TMEDA = tetramethylethylenediamine) with 2-cyanopyridine, which results in the nearly exclusive formation of the amidinate, (Me3SiNC6F5)Li·TMEDA (1) reacts with 2-cyanopyridine in toluene to yield quantitatively the lithium pyridyltetrafluorobenzimidazolate complex [C6F4N2C(2-C5H4N)]Li·TMEDA (3). In this work, the reactivity of complex 1 toward aromatic nitriles Ar?CN (Ar = Ph, o-OMeC6H4, C6F5, 2-pyridyl) was examined. Whereas complex 1 fails to react with o-methoxybenzonitrile, its reaction with benzonitrile or pentafluorobenzonitrile gives triphenyl-1,3,5-triazine (4) or the hexacoordinate lithium polymer [LiN(4-NCC6F4)(C6F5)·THF·TMEDA]n (7), respectively. When 1 is reacted with 2-cyanopyridine in tetrahydrofuran (THF), the benzimidazolate coordination polymer {[C6F4N2C(2-C5H4N)]Li·THF}n (5) is obtained. Herein we discuss how this diverse chemoselectivity in the reaction of the examined lithium N-silylated amides LiNRTMS·TMEDA (R = TMS, C6F5) with nitriles is influenced by the electronic properties of the nitrile or amide substituents and by the ability of these substituents to interact with the lithium or silicon atoms. Further, we present the syntheses and structures of zirconium tris(pyridyltetrafluorobenzimidazolate) chloride (10) and zirconium bis(dimethylamido)(pyridyltetrafluorobenzimidazolate) chloride·THF (11) complexes. These complexes, the first prepared zirconium mono- and tris(benzimidazolate)s, were crystallographically characterized and examined in the polymerization of propylene with methyl aluminoxane (1:1000 Zr/Al molar ratio).


2. Amer?Hamzah H. et al. Post-Synthetic Mannich Chemistry on Metal-Organic Frameworks: System-Specific Reactivity and Functionality-Triggered Dissolution // Chemistry – A European Journal. 2018. Vol. 24, № 43. P. 11094–11102.

The Mannich reaction of the zirconium MOF [Zr6O4(OH)4(bdc-NH2)6] (UiO-66-NH2, bdc-NH2=2-amino-1,4-benzenedicarboxylate) with paraformaldehyde and pyrazole, imidazole or 2-mercaptoimidazole led to post-synthetic modification (PSM) through C?N bond formation. The reaction with imidazole (Him) goes to completion whereas those with pyrazole (Hpyz) and 2-mercaptoimidazole (HimSH) give up to 41 and 36 % conversion, respectively. The BET surface areas for the Mannich products are reduced from that of UiO-66-NH2, but the compounds show enhanced selectivity for adsorption of CO2 over N2 at 273 K. The thiol-containing MOFs adsorb mercury(II) ions from aqueous solution, removing up to 99 %. The Mannich reaction with pyrazole succeeds on [Zn4O(bdc-NH2)3] (IRMOF-3), but a similar reaction on [Zn2(bdc-NH2)2(dabco)] (dabco=1,4-diazabicyclo[2.2.2]octane) gave [Zn3(bdc-NH2)1.32(bdc-NHCH2pyz)1.68(dabco)]?2 C7H8 5, whereas the reaction with imidazole gave the expected PSM product. Compound 5 forms via a dissolution–recrystallisation process that is triggered by the “free” pyrazolate nitrogen atom competing with dabco for coordination to the zinc(II) centre. In contrast, the “free” nitrogen atom on the imidazolate is too far away to compete in this way. Mannich reactions on [In(OH)(bdc-NH2)] (MIL-68(In)-NH2) stop after the first step, and the product was identified as [In(OH)(bdc-NH2)0.41(bdc-NHCH2OCH3)0.30(bdc-N=CH2)0.29], with addition of the heterocycle prevented by steric interactions.


3. Becker L. et al. Reactions of rac-(ebthi)M(?2-Me3SiC2SiMe3) (M=Ti, Zr) with Aryl Nitriles // Chemistry – A European Journal. 2014. Vol. 20, № 39. P. 12595–12600.

The reactions of the Group 4 metallocene alkyne complexes rac-(ebthi)M(?2-Me3SiC2SiMe3) (1 a: M=Ti, 1 b: M=Zr; rac-(ebthi)=rac-1,2-ethylene-1,1?-bis(?5-tetrahydroindenyl)) with Ph-C-N were investigated. For 1 a, an unusual nitrile–nitrile coupling to 1-titana-2,5-diazacyclopenta-2,4-diene (2) at ambient temperature was observed. At higher temperature, the C-C coupling of two nitriles resulted in the formation of a dinuclear complex with a four-membered diimine bridge (3). The reaction of 1 b with Ph-C-N afforded dinuclear compound 4 and 2,4,6-triphenyltriazine. Additionally, the reactivity of 1 b towards other nitriles was investigated.


4. Bernardi N. et al. Zirconium Tetrachloride?Formaldehyde ?-Complexes:? A Computational and Spectroscopic Investigation // J. Org. Chem. 2000. Vol. 65, № 16. P. 4783–4790.

We have carried out a combined theoretical?experimental study of the structures and energies of ZrCl4?aldehyde complexes using 13C NMR spectroscopy and a DFT (B3LYP) computational approach. The computational investigation has demonstrated the existence of different types of complexes:? a 1:1 complex (H2CO?ZrCl4), various 2:1 complexes ((H2CO)2?ZrCl4), and several dimeric species. The analysis of the energies involved in the formation of the various complexes has indicated that the dimeric species should correspond to the only adduct observed in the 13C NMR spectra (carbonyl resonance at 226.96 ppm) when a 1:1 ZrCl4/aldehyde molar ratio is used, while the 2:1 complex should be responsible for the signal at 224.30 ppm that is recorded when this molar ratio is 1:2.


5. Boyle T.J. et al. Catechol derivatives of Group 4 and 5 compounds // Polyhedron. 2005. Vol. 24, № 10. P. 1143–1152.

The structural modifications of Group 4 and 5 metal alkoxides using the bidentate catechol (C6H3(OH)2-1,3=cat-H2) have been investigated. From the reaction of [Ti(?-ONep)(ONep)3]2 (ONep=OCH2CMe3), [Zr(?-OPri)(ONep)3·HONep]2(OPri=OCHMe2), Hf(OEt)4 (OEt=OCH2Me) with 2 equivalents, and M(OEt)5 (M=Nb or Ta) with 3 equiv. of cat-H2 in pyridine (py), the complete removal of alkoxide ligands and isolation of the first neutral catechol derivatives of the Group 4 and 5 species were observed. The corresponding catechol derivatives were structurally characterized as: Ti3(?3-O)(?-cat)3(cat)(cat-H)2 (1), Zr4(?4-O)(?-cat)6(?-cat-H)2(py)4 (2), Hf4(?4-O)(?-cat)6(?-cat-H)2(py)4 (3), M(cat)2(cat-H)(py) (M=Nb (4); Ta (5)). Compound 1 is trinuclear with each octahedrally bound metal center having three chelating and three chelating bridging cat ligands, along with a ?3-O ligand, to form a corner-missing cube arrangement. Based on charge balance, two of the cat ligands must retain a hydrogen atom (cat-H). The congeners 2 and 3 adopt similar structures wherein each of the metal centers is eight coordinated, adopting a dodecahedral-like geometry. The metals are joined by a ?4-O ligand and each cation uses two chelating cat ligands to bridge to two other metal centers as well as coordinating a single py ligand. Again, based on charge balance, two of the ligands must be cat-H ligands. Compounds 1–3 are insoluble at room temperature in their parent solvent. Compounds 4 and 5 are mononuclear wherein each metal center formally adopts a seven coordination capped-trigonal prism involving three chelating catechol ligands, with one being cat-H, along with a coordinated pyridine ligand. Multinuclear NMR data indicate that the structures of 4 and 5 are retained in solution. TGA/DTA data indicated that compound 1 is a reasonable precursor for nanoparticles. 1 was used to generate nanoparticles of TiO2 from benzylalcohol.


6. U17533
Butchard J.R., Curnow O.J., Smail S.J. Synthesis and X-ray structures of the five-coordinate zirconocene complexes PhP(CH2CH2-?5-C5H4)2ZrCl2, [PhP(CH2CH2-?5-C5H4) 2ZrCl(H2O)]Cl and PhP(CH2CH2-?5-C5H4)2Zr(NCS)2 // Journal of Organometallic Chemistry. 1997. Vol. 541, № 1. P. 407–416.

The five-coordinate zirconocene dichloride PhP(CH2CH2-?5-C5H4)2ZrCl2 (3), containing a tethered bis(cyclopentadienyl)-phosphine ligand, was prepared by treating a tetrahydrofuran solution of ZrCl4(thf)2 with Li2[PhP(CH2CH2C5H4)2]. An X-ray crystal structure analysis confirmed the phosphorus atom to be coordinated to the zirconium metal center. Dissolution of 3 in wet methanol followed by evaporation of the solvent yielded the crystallographically characterized cationic chloroaqua complex [PhP(CH2CH2-?5-C5H4)2ZrCl(H2O)]+ as the chloride salt (4). Treatment of an aqueous solution of 3 with excess thiocyanate gave a good yield of the bis(isothiocyanato) complex PhP(CH2CH2-?5-C5H4)2Zr(NCS)2 (7), the structure of which was confirmed by X-ray crystallography.


7. U06083
Chen L. et al. Low-Temperature Synthesis of Nanocrystalline ZrB2 via Co-reduction of ZrCl4 and BBr3 // BCSJ. 2004. Vol. 77, № 7. P. 1423–1424.

Nanocrystalline zirconium diboride (ZrB2) has been synthesized via a sodium co-reduction of ZrCl4 and BBr3 at 400 °C. The XRD patterns can be indexed as hexagonal ZrB2 with the lattice constants a = 3.167 and c = 3.527 A. The TEM image indicates the product has particle morphology, with size of about 20 nm.


8. U43519
Coles S.J., Hursthouse M.B., Kelly D.G. The salt of the di-?-chloro-bis[tetrachlorozirconium(IV)] anion with protonated 1,3,5-trimethoxybenzene as cation // Acta Crystallographica Section C. 1999. Vol. 55, № 11. P. 1789–1791.

The neutrality of the title salt, bis(1,3,5-trimethoxyphenylium) di-#-chloro-bis [tetrachlorozirconium(IV) ], (CqHI303)2[Zr2C110], is presumably achieved by the addition of a proton to 1,3,5-trimethoxybenzene. This proton was not located crystallographically and is assumed to be disordered over all three methoxy O atoms.


9. U04001
Fernandez-Galan R. et al. Preparation and Structural Studies of Non-Symmetric Guanidinate-Supported Zirconium Complexes // Aust. J. Chem. 2014. Vol. 67, № 7. P. 1063–1070.

The new lithium guanidinate salt [Li{?-?1,?2,N,N?-(NEt)(N-t-Bu)CNMe2}(THF)]2 (1) was obtained by the reaction of HNMe2 with n-BuLi and further reaction with the asymmetric carbodiimide EtN=C=N-t-Bu. Guanidinate-supported zirconium complexes [Zr{?2,N,N?-(NEt)(N-t-Bu)CNMe2}(?-Cl)Cl2]2 (2), [Zr{?2,N,N?-(NEt)(N-t-Bu)CNMe2}3Cl] (4), [Zr{?2,N,N?-(NEt)(N-t-Bu)CNMe2}2(?5-C5H5)Cl] (5) and [Zr{?2,N,N?-(NEt)(N-t-Bu)CNMe2}(?5-C5H5)2Cl] (6) were prepared. Complexes 2, 4, and 6 were synthesized by the metathesis reaction of ZrCl4 or [ZrCl2(?5-C5H5)2] with 1. The previously described complex [Zr{?2,N,N?-(NEt)(N-t-Bu)CNMe2}2Cl2] (3), which was prepared by the insertion reaction of EtN=C=N-t-Bu into a metal–amido bond of [Zr(NMe2)2Cl2(THF)2], allowed the new complex 5 to be obtained by reaction with NaC5H5. All of the new complexes were characterized spectroscopically and the molecular structures of 1, 4, and 6 were determined by single-crystal X-ray diffraction.


10. U28330
Firouzabadi H., Iranpoor N., Jafarpour M. Rapid, highly efficient and stereoselective deoxygenation of epoxides by ZrCl4/NaI // Tetrahedron Letters. 2005. Vol. 46, № 23. P. 4107–4110.

An effective and highly chemoselective method is described for the rapid deoxygenation of different epoxides to the corresponding olefins using ZrCl4/NaI in anhydrous CH3CN, in excellent yields and with retention of relative stereochemistry.


11. U60637
Gao W.-Y. et al. Two highly porous single-crystalline zirconium-based metal-organic frameworks // Sci. China Chem. 2016. Vol. 59, № 8. P. 980–983.

Herein we report two highly porous Zr-based metal-organic frameworks (MOFs, 1 and 2) constructed by the truncated octahedral secondary building unit (SBU) of Zr6O4(OH)4(CO2)12 and the organic linear ligand of 4,4'-stilbenedicarboxylic acid (H2sbdc) or 4,4'-azobenezenedicarboxylic acid (H2abdc). Both Zr-based MOFs are obtained as single crystals of suitable size for single-crystal X-ray diffraction analysis. Furthermore, these two Zr-based MOFs have been fully characterized by powder X-ray diffraction (PXRD) studies, thermogravimetric analysis (TGA), infrared spectroscopy (IR) and gas adsorption analysis. In particular, their CO2 gas adsorption behaviors have been investigated and discussed.


12. Giesbrecht G.R. et al. Neutral and anionic transition metal complexes supported by decafluorodiphenylamido ligands: X-ray crystal structures of {Na(THF)2}{Ti[N(C6F5)2]4}, {K(?6-C6H5Me)2}{ZrCl2[N(C6F5)2]3}, K{VCl[N(C6F5)2]3}, Fe[N(C6F5)2]2(THF)2 and Co[N(C6F5)2]2(py)2 // Polyhedron. 2003. Vol. 22, № 1. P. 153–163.

Reaction of MN(C6F5)2 (M=Na, K) with transition metal halides results in the formation of transition metal complexes incorporating decafluorodiphenylamido ligands. TiCl3(THF)3 reacts with 3 equiv. NaN(C6F5)2 to yield the ‘metallate’ complex {Na(THF)2}{Ti[N(C6F5)2]4} (1). Single crystal X-ray diffraction studies reveal a tetrahedral titanium center complexed by four decafluorodiphenylamido ligands; while two THF ligands and four fluorine atoms coordinate the sodium cation. ZrCl4 reacts with 3 equiv. KN(C6F5)2 to give {K(?6-C7H8)2}{ZrCl2[N(C6F5)2]3} (2). The 19F NMR spectrum of 2 reveals phenyl resonances in a 2:1 ratio, consistent with a trigonal bipyramidal structure being maintained in solution. The crystal structure of 2 reveals a pseudo-octahedral structure, with the sixth-coordination site being completed by a weak Zr-F interaction with a pentafluorophenyl group of an amido ligand. The potassium counterion interacts in an ?6 fashion with two toluene rings in addition to a fluorine atom arising from one of the pentafluorophenyl groups. The reaction of VCl3 with 3 equiv. KN(C6F5)2 generates the ‘metallate’ complex K{VCl[N(C6F5)2]3} (3); the solid state structure of 3 reveals a distorted trigonal bipyramid with the coordination sphere being completed by a weak V–F interaction with the ortho-fluorine of one of the fluorophenyl amido ligands. Exposure of FeCl3 to 3 equiv. KN(C6F5)2 results in reduction of the metal center and the formation of the Fe(II) species Fe[N(C6F5)2]2(THF)2 (4). Compound 4 is tetrahedral in the solid state with none of the weak M-F contacts observed for 1, 2, 3 and 5. CoI2 reacts with 2 equiv. NaN(C6F5)2 in the presence of pyridine to produce the expected product Co[N(C6F5)2]2(py)2 (5); X-ray crystallography reveals a five-coordinate species in the solid state which is additionally stabilized by a weak Co-F interaction.


13. Glockner A. et al. From a Cycloheptatrienylzirconium Allyl Complex to a Cycloheptatrienylzirconium Imidazolin-2-iminato “Pogo Stick” Complex with Imido-Type Reactivity // Inorg. Chem. 2012. Vol. 51, № 7. P. 4368–4378.

The reaction of the cycloheptatrienylzirconium half-sandwich complex [(?7-C7H7)ZrCl(tmeda)] (1) (tmeda = N,N,N?,N?-tetramethylethylenediamine) with Li(ImDippN), generated from bis(2,6-diisopropylphenyl)imidazolin-2-imine (ImDippNH) with methyllithium, yields the imidazolin-2-iminato complex [(?7-C7H7)Zr(ImDippN)(tmeda)] (2). The corresponding tmeda-free complex [(?7-C7H7)Zr(ImDippN)] (5) can be synthesized via the 1,3-bis(trimethylsilyl)allyl complex [(?7-C7H7)Zr{?3-C3H3(TMS)2}(THF)] (3; TMS = SiMe3), which undergoes an acid–base reaction with ImDippNH to form 5 and 1,3-bis(trimethylsilyl)propene. 5 exhibits an unusual one-legged piano stool (“pogo stick”) geometry with a particularly short Zr–N bond of 1.997(2) A. Addition of 2,6-dimethylphenyl or tert-butyl isocyanide affords the complexes [(?7-C7H7)Zr(ImDippN)(CNR)] (R = o-Xy, 6; R = t-Bu, 7), while the reaction with 2,6-dimethylphenyl isocyanate results in a [2 + 2] cycloaddition to form the ureato(1?) complex [(?7-C7H7)Zr{ImDippN(C=O)N-o-Xy}] (8). 5 can also act as an initiator for the ring-opening polymerization of ?-caprolactone. These reactivity patterns together with density functional theory calculations reveal a marked similarity of the bonding in imidazolin-2-iminato and conventional imido transition-metal complexes.


14. U15773
Gushikem Y. et al. Electrochemical Properties of [Ru(edta)(H2O)]?Immobilized on a Zirconium(IV) Oxide-Coated Silica Gel Surface // Journal of Colloid and Interface Science. 1996. Vol. 184, № 1. P. 236–240.

[Ru(edta)(H2O)]?is strongly adsorbed on a zirconium(IV) oxide-coated silica gel surface. The immobilized complex showed an electrochemical response due to the Ru(II)/Ru(III) redox couple. By substituting the coordinated water molecule in the adsorbed complex, the midpoint potentials shifted in the order (in mV) water, ?290; thiocyanate, ?200; pyridine, ?180; 4-cyanopyridine, ?80; and pyrazine, ?50 vs SCE.


15. Haussuhl E., Ott H., Haussuhl S. Crystal structure of the low temperature phase of bis(hexylammonium) zirconium bis(nitrilotriacetate) dihydrate, (CH3(CH2)5NH3)2 Zr (N(CH2COO)3)2 · 2 H2O // Zeitschrift fur Kristallographie Crystalline Materials. 2012. Vol. 227, № 2. P. 79–83.

The crystal structure of the low temperature phase of bis(hexylammonium) zirconium bis(nitrilotriace-tate) dihydrate was investigated at 100 K by means of X-ray single crystal diffraction. Although the zirconium bis(nitrilotriacetate) anion representing the dominant part of the crystal structure shows only minor changes during the phase transition, a strong change in respect to the oriaentation of the hexylammonium cations takes place. These are now statically disordered over two geometrically quite different conformations at 100 K. The distance between the terminal carbon atoms of the two possible conformations of the hexylammonium cation is as large as 5.7 A. The space group remains C2/c after passing the phase transition from the high temperature phase to the low temperature phase with the lattice parameters a = 18.8708 (6) A, b = 11.2229 (3) A, c = 16.1895 (5) A, ? = 112.726 (1)°. In addition heat capacity measurements were performed, which yielded broad peaks at about 275 K indicating the phase transition temperature Tc.


16. Horacek M. et al. Intramolecular activation of a pendant nitrile group in Ti and Zr metallocene complexes // Journal of Organometallic Chemistry. 2015. Vol. 787. P. 56–64.

Several approaches to the intramolecular activation of a pendant nitrile group attached to the group 4 metallocene framework have been probed starting with the complexes [(?5-C5Me5)(?5-C5H4CMe2CH2CN)MCl2] (M = Zr, 1; M = Ti, 2). A reduction induced activation of the nitrile moiety was effected for the Zr derivative either by the treatment with Mg, or by the alkylation using t-BuMgCl followed by spontaneous reductive elimination. In both cases, the reactions finally yielded the zirconocene cyano complex with an intramolecularly tethered alkyl substituent, [(?5-C5Me5)(?5:?C1-C5H4CMe2CH2)Zr(CN-?C)] (4), which resulted from the C–C bond cleavage in the pendant arm. Furthermore, a by-product was isolated which contained two zirconocene fragments bridged through a MgCl2 moiety featuring a rare ?,?-bridging mode of the pendant nitrile group, [{(?5-C5Me5)(?-?5:?2:?N-C5H4CMe2CH2CN)(?-Cl)Zr}2Mg] (3). The solid-state structure of 3 was elucidated and this compound together with the product 4 and the tentative intermediate [{(?5-C5Me5)(?5:?2-C5H4CMe2CH2CN)Zr] (3?) were also investigated by DFT calculations. In another approach, 1 and 2 were treated with Li[B(C6F5)4]•Et2O to generate cationic complexes. Accidental hydrolysis of these species afforded complexes bearing an intramolecularly tethered amide group [{(?5-C5Me5)(?5:?O-C5H4CMe2CH2CONH2)M], of which the Ti derivative (6) was isolated and structurally characterised. Finally, reaction of the zirconocene dimethyl complex [(?5-C5Me5)(?5-C5H4CMe2CH2CN)ZrMe2] (8) with (Ph3C)[B(C6F5)4] was studied.


17. Illingsworth M.L. et al. Synthesis, structure, and reactivity of bis(N,N?-bis(2-hydroxybenzylidene)-2-hydroxyphenylmethanediaminato)zirconium(IV), a Schiff base complex with 6,4,6-membered chelate rings // Polyhedron. 2002. Vol. 21, № 2. P. 211–218.

The title complex Zr(dshpm)2 has been successfully prepared by heating a 1:2 mole ratio of Zr(OBun)4 and the free ligand in absolute ethanol. It is mononuclear and eight-coordinate in the solid state with a dodecahedral coordination sphere. The two O,N,N,O donor atom quadridentate Schiff base ligands each form 6,4,6-membered chelate rings. As expected, the change in a chelate ring sizes from 6,5,6- to 6,4,6- resulted in significantly more labile complex, as indicated by TLC and NMR of heated solutions and its subsequent chemical reactions. The 0.010 A shorter average Zr?N bond distance was not anticipated, and appears to result from the zirconium atom's preference that the oxygen atoms occupy certain locations. Preparations of two heteroleptic complexes from the title complex were undertaken to evaluate potential of the title compound as a synthon. A new fluorine-substituted homoleptic Schiff base Zr complex was also prepared, for comparison purposes. Despite the reasonable stability of Zr(dshpm)2 in air, the decomposition of labilized Hdshpm(2-) ligand on silica gel and in heated solution interfered with the purifications of the desired heteroleptic products.


18. U61004
Jain A., Prakash O., Kakkar L.R. Spectrophotometric determination of zirconium with 5,7-dibromo-8-hydroxyquinoline in presence of thiocyanate // J. Anal. Chem. 2010. Vol. 65, № 8. P. 820–824.

The characteristics of the ternary complex formed between zirconium(IV) and 5,7-dibromo-8-hydroxyquinoline in presence of thiocyanate have been studied with an analytical point of view. The resulting colored species is extractable into chloroform with absorption maximum at 416 nm, which leads to the determination of the trace amounts of the metal ion. The method obeys Beer's law in the range 0.2-9.0 mu g Zr/mL having molar absorbitivity and Sandell's sensitivity values of 1.05 x 10(4) L/mol cm and 0.0087 mu g Zr/cm(2), respectively. The ratio of zirconium(IV), 5,7-dibromo-8-hydroxyquinoline and thiocyanate in the extracted species is found to be 1: 2: 2. A large number of foreign ions do not interfere in the proposed method. The applicability of the procedure is tested by carrying out satisfactorily the analysis of a wide variety of samples.


19. U42094
Lindenberg F., Sieler J., Hey-Hawkins E. Formation of novel P- and As-functionalized ligands by insertion reactions into the Zr-E bond of (?5?C5H4R)2ZrCl{E(SiMe3)2} (R = Me, E = P, As; R = H, E = P) // Polyhedron. 1996. Vol. 15, № 9. P. 1459–1464.

Cp?2ZrCl{P(SiMe3)2} (Cp? = ?5?C5H4Me) undergoes insertion of PhNC into the Zr-P bond, yielding Cp?2ZrCl{?2-N(Ph)CP(SiMe3)2} (1). Cp2ZrCl{P(SiMe3)2} (Cp = ?5?C5H5) and Cp?2ZrCl{As(SiMe3)2} insert PriN-C-NPri into the Zr-or Zr-As bond with the formation of (2) and (3). 1–3 were characterized spectroscopically, and a crystal structure determination carried out on 3 shows an ?2-bonding mode of the NPriC {E(SiMe3)2} NPri ligand.


20. Liu L. et al. Metal–Organic Gel Material Based on UiO-66-NH2 Nanoparticles for Improved Adsorption and Conversion of Carbon Dioxide // Chemistry – An Asian Journal. 2016. Vol. 11, № 16. P. 2278–2283.

Metal–organic frameworks (MOFs) including the UiO-66 series show potential application in the adsorption and conversion of CO2. Herein, we report the first tetravalent metal-based metal–organic gels constructed from ZrIV and 2-aminoterephthalic acid (H2BDC-NH2). The ZrBDC-NH2 gel materials are based on UiO-66-NH2 nanoparticles and were easily prepared under mild conditions (80 °C for 4.5 h). The ZrBDC-NH2-1:1-0.2 gel material has a high surface area (up to 1040 m2 g?1) and showed outstanding performance in CO2 adsorption (by using the dried material) and conversion (by using the wet gel) arising from the combined advantages of the gel and the UiO-66-NH2 MOF. The ZrBDC-NH2-1:1-0.2 dried material showed 38 % higher capture capacity for CO2 at 298 K than microcrystalline UiO-66-NH2. It showed high ideal adsorbed solution theory selectivity (71.6 at 298 K) for a CO2/N2 gas mixture (molar ratio 15:85). Furthermore, the ZrBDC-NH2-1:1-0.2 gel showed activity as a heterogeneous catalyst in the chemical fixation of CO2 and an excellent catalytic performance was achieved for the cycloaddition of atmospheric pressure of CO2 to epoxides at 373 K. In addition, the gel catalyst could be reused over multiple cycles with no considerable loss of catalytic activity.


21. Liu S.-C., Yue Z.-F., Liu Y. Mesoporous carbon–ZrO2 composites prepared using thermolysis of zirconium based metal–organic frameworks and their adsorption properties // J Porous Mater. 2015. Vol. 22, № 2. P. 465–471.

Mesoporous carbon–ZrO2 (MCZ) composites are prepared using a simple thermal conversion of metal–organic frameworks (MOFs). By choosing a zirconium based MOFs, called UiO-66, as both the Zr and C precursor and the porous template, porous carbon–ZrO2 hybrid materials are formed by carbonizing UiO-66 at 600 °C in an inert atmosphere. The structure, morphology, and porosity of the products were studied using powder X-ray diffraction, transmission electron microscopy, thermogravimetry, and the BET surface area method. The obtained MCZ materials exhibit a relatively high specific surface area of ~136 m2 g?1, a large pore size, and pore volumes of ~9.6 nm and ~0.33 cm?3 g?1, respectively. The results also indicate that the MCZ materials have a good capacity to adsorb Congo red from an aqueous solution.


22. Low C.H. et al. Oxidative Coupling with Zr(IV) Supported by a Noninnocent Anthracene-Based Ligand: Application to the Catalytic Cotrimerization of Alkynes and Nitriles to Pyrimidines // J. Am. Chem. Soc. 2018. Vol. 140, № 38. P. 11906–11910.

We report the synthesis and reactivity of Zr complexes supported by a 9,10-anthracenediyl-linked bisphenoxide ligand, L. ZrIVLBn2 (1) undergoes facile photolytic reduction with concomitant formation of bibenzyl and ZrIVL(THF)3 (2), which displays a two-electron reduced anthracene moiety. Leveraging ligand-stored reducing equivalents, 2 promotes the oxidative coupling of internal and terminal alkynes to isolable zirconacyclopentadiene complexes, demonstrating the reversible utilization of anthracene as a redox reservoir. With diphenylacetylene under CO, cyclopentadienone is formed stoichiometrically. 2 is competent for the catalytic formation of pyrimidines from alkynes and nitriles. Mechanistic studies suggest that selectivity for pyrimidine originates from preferred formation of an azazirconacyclopentadiene intermediate, which reacts preferentially with nitriles over alkynes.


23. U15650
Maddox A.F. et al. C–N Bond formation via ligand-induced nucleophilicity at a coordinated triamidoamine ligand // Chem. Commun. 2011. Vol. 47, № 42. P. 11769–11771.

Reaction of (N3N)ZrX complexes (X = amido, Cl?, CH3?) with carbodiimide substrates results in insertion into an Zr–N bond of the triamidoamine ligand rather than the Zr–X bond as has been observed for related (N3N)ZrX complexes (X = PR2?, AsR2?).


24. Mdluli V. et al. A tripodal aminothioether ligand scaffold: Synthesis and coordination to zirconium and hafnium // Polyhedron. 2017. Vol. 121. P. 264–268.

The heptadentate ligand, tris-(2-(2-(methylthio)phenylamino)ethyl)amine (2), has been synthesized from the condensation of nitrilotriacetyl chloride with 2-(methylthio)aniline, to generate 2,2?,2?-nitrilotris(N-(2-(methylthio)phenyl)acetamide) (1), followed by a lithium aluminum hydride reduction. The zirconium (3) and hafnium (4) complexes of this ligand were generated via transamination reactions. Both complexes are isostructural, exhibiting a hexadentate N4S2 coordination from the ligand, with one diethylamido ligand also bound. The solid state structures of all compounds are reported.


25. Perera I.R., Hettiarachchi C.V., Ranatunga R.J.K.U. Metal–Organic Frameworks in Dye-Sensitized Solar Cells // Advances in Solar Energy Research / ed. Tyagi H. et al. Singapore: Springer Singapore, 2019. P. 175–219.

In 1991, the very first high-efficiency dye-sensitized solar cell (DSC) was reported by Brian O’Regan and Michael Gratzel. Since then these devices have been steadily developed around the world. Environment friendliness, cost-effectiveness, easy fabrication, and significant performance under indoor light conditions encourage researchers to explore the possibility of commercializing DSCs. Numerous materials have been tested to improve the overall device performance leading to efficiencies over 14%. Metal–organic frameworks (MOFs) are one such material that has been utilized to further improve device performance. Although this field is only in its incipiency, MOF-integrated DSCs have demonstrated the possibility of fabricating devices as efficient as conventional devices. This chapter is focused on MOF-based DSCs with a brief introduction on MOFs and DSCs, separately. The basic requirements of MOFs to be utilized in DSCs are then discussed. Further, the up-to-date state of MOF research in the area of DSCs will be reviewed. Finally, directions of future research on MOF-based DSCs are identified, with emphasis on reaching the desired properties of MOFs that impact device performance. It is hoped that by establishing robust structure–property relationships, future design and synthesis of MOF-based DSCs will converge to desired commercialization goals.


26. U08695
Polo-Ceron D. et al. Synthesis of Bulky Zirconocene Dichloride Compounds and Their Applications in Olefin Polymerization // Collect. Czech. Chem. Commun. 2007. Vol. 72, № 5. P. 747–763.

The bulky substituted cyclopentadienyllithium derivatives, LiC5H4(CHMeR) (R = C6H5 (1), 1-naphthyl (2), 9-anthryl (3)), were synthesized from the reaction of 6-phenylfulvene, 6-(1-naphthyl)fulvene or 6-(9-anthryl)fulvene with LiMe. The ansa-bis(cyclopentadiene) ligands Me2Si(C5HMe4){C5H4(CHMeR)} (R = C6H5 (4), 1-naphthyl (5), 9-anthryl (6)), and their lithium derivatives Li2(Me2Si(C5Me4){C5H3(CHMeR)}) (R = C6H5 (7), 1-naphthyl (8), 9-anthryl (9)) have been prepared. The zirconocene complexes, [Zr(?5-C5H5){?5-C5H4- (CHMeR)}Cl2] (R = C6H5 (10), 1-naphthyl (11), 9-anthryl (12)) and [Zr{?5-C5H4(CHMeR)}2Cl2] (R = C6H5 (13), 1-naphthyl (14), 9-anthryl (15)), were synthesized by the reaction of lithium derivatives 1-3 and [Zr(?5-C5H5)Cl3] or ZrCl4, respectively. The reaction of the lithium ansa-derivatives 7-9 and zirconium tetrachloride yielded the ansa-zirconocene complexes, [Zr(Me2Si(?5-C5Me4){?5-C5H3(CHMeR)})Cl2] (R = C6H5 (16), 1-naphthyl (17), 9-anthryl (18)). The zirconocene complexes have been tested in the polymerization of ethene and propene. The polymerization of propene with the ansa-zirconocene catalysts 16-18 gave polypropylene with 70% mmmm pentads and the symmetric zirconocene catalysts 13-15 30-60% mmmm pentads.


27. Remya V.R., Kurian M. Synthesis and catalytic applications of metal–organic frameworks: a review on recent literature // Int Nano Lett. 2019. Vol. 9, № 1. P. 17–29.

Metal–organic frameworks (MOFs) are an emerging class of porous materials created by the assembly of inorganic connectors and organic linkers. They have potential applications in fields such as gas storage as well as separation, sensing, catalysis, and drug delivery due to its properties such as flexibility, porosity, high surface area and functionality. Among the various synthetic approaches for the preparation of MOFs, solvothermal and microwave-assisted methods are of particular importance, and hence have been used frequently. They have been recently used as heterogeneous catalysts in Friedel–Crafts reactions, condensations reactions, oxidations, coupling reactions, etc. However, owing to the low thermal stability and moisture sensitivity, their catalytic applications are limited. This short review covers recent developments in the synthetic methods employed for the preparation of MOFs as well as their catalytic applications.


28. Roering A.J. et al. General Preparation of (N3N)ZrX (N3N = N(CH2CH2NSiMe3)33?) Complexes from a Hydride Surrogate // Organometallics. 2009. Vol. 28, № 2. P. 573–581.

A homoleptic triamidoamine zirconium complex featuring a metalated trimethylsilyl substituent, [?5-(Me3SiNCH2CH2)2NCH2CH2NSiMe2CH2]Zr (1), was synthesized by reaction of Zr(CH2Ph)4 with N(CH2CH2NHSiMe3)3 followed by sublimation. Complex 1 is a general precursor to a family of complexes with the formulation (N3N)ZrX (N3N = N(CH2CH2NSiMe3)33?, X = anionic ligand) by reactions that parallel expected reactivity of a hydride derivative. Treatment of 1 with phosphines, amines, thiols, alkynes, and phenol resulted in the formation of new, pseudo-C3v-symmetric (N3N)ZrX complexes (X = phosphido, amido, alkynyl, thiolate, or phenoxide) via element?H bond activation. Thus, the reactivity of complex 1 is that best described as a hydride surrogate. For example, complex 1 reacted with PhPH2 at ambient temperature to provide (N3N)ZrPHPh (2) in 86% yield. Density functional theory studies and X-ray crystal structures provide a general overview of the bonding in these complexes, which appears to be highly ionic. In general, there is little evidence for ligand-to-metal ?-bonding for the pseudoaxial X ligand in these complexes except for strongly ?-basic terminal amido ligands. The limited ?-bonding appears to be the result of competitive ?-donation by the pseudoequatorial amido arms of the triamidoamine ancillary ligand. Thus, the relative Zr?X bond energies are governed by the basicity of the anionic ligand X. Solid-state structures of phosphido (3, 4, 5), amido (10), and thiolate (15) complexes support the computational results.


29. Shahroosvand H. et al. Synthesis, characterization and optical properties of novel N donor ligands-chelated zirconium(IV) complexes // Optical Materials. 2012. Vol. 35, № 1. P. 79–84.

Novel zirconium complexes have been synthesized by using a mixture of zirconium nitrate, 1,2,4,5-benzen tetracarboxylic acid (H4btec), 1,10-phenanthroline(phen) and potassium thiocyanate. Monodentate coordination mode of btec acid for all complexes was investigated by FT-IR spectroscopy. The complexes were also characterized by UV–Vis, 1H NMR, CHN, ICP-AES. The reaction details and features were described and discussed. The photoluminescence emission of seven zirconium complexes was shown two series peaks: first, sharp and intense bands from 300 to 500nm and broadened with less intensity from 650 to 750nm for the second bands. Each of the zirconium compounds were doped in PVK:PBD blend as host. The ratio of zirconium complexes for each type were modified 8wt.% in PVK:PBD(100:40). The electroluminescence spectra of zirconium complexes were indicated a red shift rather than PVK:PBD blend. We suggest that the electroplex occurring at PVK–Zr complex interface.


30. Wang Z. et al. Zr-Based MOFs integrated with a chromophoric ruthenium complex for specific and reversible Hg2+ sensing // Dalton Trans. 2018. Vol. 47, № 16. P. 5570–5574.

A novel metal–organic framework of RuUiO-67 was successfully fabricated and exploited as a chemical sensor for the colorimetric detection of Hg2+. The chromophoric Ru complex in RuUiO-67 was designed as a Hg2+ recognition site and a signal reporter. The elaborated probe exhibited a rapid colorimetric response, high selectivity, and sub-micromolar sensitivity for Hg2+ detection.


31. Yu S. et al. Insertion of Nitriles into Zirconocene 1-aza-1,3-diene Complexes: Chemoselective Synthesis of N–H and N-Substituted Pyrroles // Angewandte Chemie. 2014. Vol. 126, № 43. P. 11780–11783.

The direct insertion of nitriles into zirconocene-1-aza-1,3-diene complexes provides an efficient, chemoselective, and controllable synthesis of N-H and N-substituted pyrroles upon acidic aqueous work-up. The outcome of the reaction (that is, the formation of N-H or N-substituted pyrroles) results from the different cyclization patterns, which depend on the relative stability and reactivity of the enamine–imine tautomers formed by hydrolysis of the diazazirconacycles.


32. Zhang X. et al. Metal–Organic Frameworks (MOFs) and MOF-Derived Materials for Energy Storage and Conversion // Electrochem. Energ. Rev. 2019. Vol. 2, № 1. P. 29–104.

As modern society develops, the need for clean energy becomes increasingly important on a global scale. Because of this, the exploration of novel materials for energy storage and utilization is urgently needed to achieve low-carbon economy and sustainable development. Among these novel materials, metal–organic frameworks (MOFs), a class of porous materials, have gained increasing attention for utilization in energy storage and conversion systems because of ultra-high surface areas, controllable structures, large pore volumes and tunable porosities. In addition to pristine MOFs, MOF derivatives such as porous carbons and nanostructured metal oxides can also exhibit promising performances in energy storage and conversion applications. In this review, the latest progress and breakthrough in the application of MOF and MOF-derived materials for energy storage and conversion devices are summarized, including Li-based batteries (Li-ion, Li–S and Li–O2 batteries), Na-ion batteries, supercapacitors, solar cells and fuel cells. Graphical Abstract Open image in new window


33. Zhao J. et al. Formation of Zirconocenes Containing Vinyl-imine and Keteniminate Species from Zirconacycles and Diphenylacetonitrile // Organometallics. 2011. Vol. 30, № 13. P. 3464–3467.

The first well-defined zirconocene complexes processing vinyl-imine and keteniminate species have been achieved from zirconacyclopentenes or zirconacyclopentadienes and 2 equiv of Ph2CHCN. Multifunctional effect of Ph2CHCN is observed for the first time in one system. This process proceeds via the azazirconacyclopentadiene intermediate and its intramolecular proton transfer. Moreover, ?,??-C–C bond cleavage of tetra-alkyl-substituted zirconacyclopentadienes is observed for the first time under the appropriate conditions.


34. Безрядин С.Г., Чевела В.В., Иванова В.Ю., Мухамедьярова Л.И., Айсувакова О.П. Состав, устойчивость и структура цитратoв циркония (IV) в водных растворах // Вестник Оренбургского Государственного Университета. 2010. № 12–1 (118). С. 22–26.

Методами рН-метрии и математического моделирования равновесий определены состав, устойчивость и доли накопления цитратных комплексов циркония (IV) в водном растворе при мольном соотношении металл : лиганд 1:1, 1:3 в широком диапазоне рН. Проведен квантово-химический расчет структуры моноцитрата циркония (IV) с учетом второй гидратной сферы.


35. Безрядин С.Г., Чевела В.В., Мухамедьярова Л.И. и др. Устойчивость и стереоэффекты образования гетероядерных d- и dl-тартратов циркония(IV) и железа(III) по данным ЯМ-релаксации. // 2016. С. 313–320.


36. 003831
Болотин Д.С. Реакции амидоксимов с металлоактивированными нитрилами // Координационная химия. 2018. Т. 44. № 2. С. 94–102.

Обсуждены металлопромотируемые реакции амидоксимов с нитрильными лигандами с учетом недавних работ автора, позволяющих понять закономерности протекания этих реакций. Рассмотрены общие пути активации амидоксимных и нитрильных субстратов в исследуемых реакциях. Приведены реакции, в которых амидоксимы выступают в качестве HO- и HN-нуклеофилов, а также реакции амидоксимов с нитрильными лигандами, приводящие к гетероциклическим системам.


37. Гусейнова С.Н., Бабаев Э.Р. и др. Комплексообразование солей переходных металлов с некоторыми кремнийорганическими нитрилами: термодинамика, механизм реакций и практические свойства // Научные труды НИПИ Нефтегаз ГНКАР. 2015. Т. 3. № 3. С. 66–76.

В работе представлены результаты экспериментов по выявлению антимикробной активности синтезированных соединений и их комплексов. Установлено, что синтезированные кремнийорганические нитрилы обладают выраженными антимикробными свойствами, являются полифункциональными присадками к нефтяным маслам, придавая им противоизносные, противозадирные и антикоррозионные свойства. Кроме того представлены результаты квантово-химических исследований строения ряда кремнийорганических нитрилов и их комплексов с солями переходных металлов: рассмотрено влияние различных заместителей и солей на строение нитрильной и координационной связей. Также представлены особенности распределения эффективных зарядов на атомах мономеров. Установлено, что при комплексообразовании кремнийорганических нитрилов с солями переходных металлов, образуются ?-комплексы. Вклад ?-связывания в координационную связь возрастает в ряду комплексов металлов Co-Ni-Cu-Zn.


38. 002260
Кравченко С.Е., Бурлакова А.Г. и др. Образование наночастиц диборида циркония при взаимодействии тетрахлорида циркония с борогидридом натрия // Неорганические материалы. 2017. Т. 53. № 8. С. 817–821.

Исследовано взаимодействие ZrCl4 с NaBH4 при температурах 300-725 °C. Показано, что образование однофазного наноразмерного диборида циркония наблюдается при t ? 575 °C. По данным электронной микроскопии, порошок ZrB2, полученный при 575 и 725 °C, состоит из частиц различной формы, некоторые из них близки к сферическим диаметром 10-20 и 25-35 нм. Эти значения согласуются с эквивалентными диаметрами частиц, рассчитанными из величин удельной поверхности ZrB2 - ~ 14 и ~ 32 нм, а также с областями когерентного рассеяния Dhkl - ~ 13 и ~ 28 нм, вычисленными из рентгенографических данных.


39. 001709
Малков А.А., Васильева К.Л., Альмяшева О.В., Малыгин А.А. Влияние температуры обработки ZrO2 на взаимодействие с тетрахлоридом титана // Журнал общей химии. 2016. Т. 86. № 5. С. 736–742.

Представлены данные по фазовым и химическим превращениям наноразмерного диоксида циркония, прокаленного в интервале температур 25-1300°С. Изучено взаимодействие in situ тетрахлорида титана с наноразмерным образцом диоксида циркония, термообработанном в интервале 200-800°С. Установленные закономерности изменения содержания титана и отношения Cl/Ti в составе хемосорбированных групп подтверждают протекание реакции TiCl4 с диоксидом циркония, термообработанном до 400°С, преимущественно с гидроксильными группами с образованием групп TiCl4-n. При дальнейшем повышении температуры отжига матрицы взаимодействие TiCl4 осуществляется также с координационно-ненасыщенными центрами Zr+ и Zr-O-.


40. 002311
Махаев В.Д., Петрова Л.А., Бравая Н.М., Файнгольд Е.Е. и др. Механохимический синтез феноксииминных комплексов циркония и гафния состава L 2МCl 2 (L = N-(3,5-ди- трет-бутилсалицилиден)-2,3,5,6-тетрафторанилинат-анион) и их каталитические свойства в реакции полимеризации этилена // Известия Академии Наук. Серия Химическая. 2014. № 7. С. 1533-1538.

Разработан новый способ получения феноксииминных комплексов циркония и гафния состава L 2МCl 2 (L = N-(3,5-ди- трет-бутилсалицилиден)-2,3,5,6-тетрафторанилинат-анион, M = Zr, Hf) путем твердофазного взаимодействия N-(3,5-ди- трет-бутилсалицилиден)-2,3,5,6-тетрафторанилина, хлоридов вышеуказанных металлов и гидрида натрия в условиях механической активации с последующим прогревом активированной смеси. Полученные комплексы обладают высокой каталитической активностью в реакциях полимеризации этилена.


41. 011378
Салюлев А.Б., Хохлов В.А., Москаленко Н.И. Электропроводность расплавленных смесей KAlCl4-ZrCl4 в широком интервале температур // Расплавы. 2018. № 6. С. 674–681.

В ячейках оригинальной конструкции впервые измерена удельная электропроводность перспективных для промышленного использования расплавленных смесей KAl°Cl4-ZrCl4 в зависимости от состава (0-32.5 мол. % ZrCl4) и температуры (345- 556 С). Установлено, что электропроводность возрастает при увеличении температуры и при понижении мольно-долевого содержания тетрахлорида циркония. Выведены уточненные уравнения температурных и концентрационной зависимостей электропроводности этих расплавов с учетом результатов наших предыдущих исследований.


42. 001681
Шарутин В.В., Шарутина О.К., Лобанова Е.В. Синтез и строение комплексов циркония Ph PR+[ZrCl ]2-, R = Et, CH2Ph, CH2C(O)OMe // Журнал неорганической химии. 2018. Т. 63. № 12. С. 1549–1554.

Взаимодействием тетрахлорида циркония с хлоридами трифенилорганилфосфония в ацетонитриле синтезированы и структурно охарактеризованы комплексы Ph3PR[ZrCl6]2-, R = Et (I), CH2Ph (II)(сольват 1 : 1 с ацетонитрилом), CH2C(O)OMe (III). Атомы фосфора в катионах трифенилорганилфосфония имеют искаженную тетраэдрическую координацию: углы CPC 108.29(9) -110.84(8) (I), 106.91(8) -112.21(8) (II), 107.26(9) -112.83(9) (III), длины связей P-С 1.793(2)-1.803(2),1.791(2)-1.824(2) и 1.784(2)-1.811(2) A в I, II и III соответственно. В центросимметричных октаэдри-ческих анионах [ZrCl6]2- комплекса I расстояния Zr-Cl составляют 2.4625(11)-2.4634(11) A. В II и III октаэдрическая конфигурация анионов искажена: углы транс- ClZrCl составляют 176.80(2), 177.12(2), 179.80(2) и 175.53(3), 175.97(2), 177.75(2) соответственно, связи Zr-Cl равны 2.4489(11)-2.4953(15) A (II) и 2.4510(8)-2.4864(9) A (III).


На главную К списку выставокАрхив выставок