На главную К списку выставокАрхив выставок

Периферические сенсорные нейроны у трохофорных животных

Журнальные статьи

1. Baratte S., Bonnaud L. Evidence of early nervous differentiation and early catecholaminergic sensory system during Sepia officinalis embryogenesis // Journal of Comparative Neurology. 2009. Vol. 517, № 4. P. 539–549.

Within Mollusca, cephalopods exhibit a particularly complex nervous system. The adult brain is formed from the fusion of several “typical” molluscan ganglia but it remains poorly understood how these ganglia emerge, migrate, and differentiate during embryogenesis. We studied the development of both central and peripheral nervous system by antibodies raised against ?-tubulin and tyrosine hydroxylase (TH) in Sepia officinalis embryos to visualize neurites and catecholamine-containing neurons, respectively. In early embryos, when organs start delineating, some ganglia already exhibited a significant fiber network. TH-like immunoreactivity was detected in these fibers and in some primary sensory neurons in the embryo periphery. These data attest to the occurrence of an early embryonic sensory nervous system, likely effective, transient in part, and in relation to the perception of external cues. Concerning the peripheral nervous network, the stellate ganglia emerged as a plexus of numerous converging axons from TH-like immunoreactive sensory cells, first at the mantle edge, and then in the whole mantle surface. Later, TH-immunopositive motor fibers, originating from the stellate ganglia, penetrated the circular muscles of the mantle. These patterns reveal the setup of a mantle midline with likely attractive and repulsive properties. Our findings seem to challenge the widespread, still accepted, view of a late differentiation of cephalopod ganglia, and provides significant data for further investigations about axonal guidance during cephalopod development.


2. Battonyai I. et al. Neuronal Development in the Larvae of the Invasive Biofouler Dreissena polymorpha (Mollusca: Bivalvia), with Special Attention to Sensory Elements and Swimming Behavior // The Biological Bulletin. 2018. Vol. 234, № 3. P. 192–206.

Although understanding of the neuronal development of Trochozoa has progressed recently, little attention has been paid to freshwater bivalves, including species with a strong ecological impact, such as the zebra mussel (Dreissena polymorpha). Therefore, an important question might concern how the developing nervous system is involved in the formation of the rapid and successful invasive behavior of this species. Our aim was to reveal the neuronal development of trochophore and veliger larvae of Dreissena, with special attention to the organization of sensory structures and their possible involvement in detecting environmental cues. After applying serotonin and FMRFamide immunocytochemistry, the first serotonin immunoreactive sensory elements appeared 16–18 hours after fertilization, whereas the first FMRFamide immunoreactive sensory cell was seen only at 32 hours of development (trochophore stage). Later, sensory elements were found in three parts of the larval body, including the apical organ, the posterior region, and the stomach. Although differences in the timing of appearance and the morphology of cells were observed, the two signaling systems showed basic similarity in their organization pattern until the end of the veliger stage. Pharmacological, physiological, and quantitative immunocytochemical investigations were also performed, suggesting the involvement of both the serotoninergic system and the FMRFamidergic system in sensomotor processes. Manipulation of the serotonin synthesis by para-chloroplenylalanine and 5-hydroxytryptophane, as well as application of increased salinity, influenced larval swimming activity, both accompanied by changes in immunofluorescence intensity. We concluded that these two early sensory systems may play an important role in the development of settlement competency of this biofouling invasive bivalve, Dreissena.


3. Bell H.J. et al. Peripheral oxygen-sensing cells directly modulate the output of an identified respiratory central pattern generating neuron // European Journal of Neuroscience. 2007. Vol. 25, № 12. P. 3537–3550.

Breathing is an essential homeostatic behavior regulated by central neuronal networks, often called central pattern generators (CPGs). Despite ongoing advances in our understanding of the neural control of breathing, the basic mechanisms by which peripheral input modulates the activities of the central respiratory CPG remain elusive. This lack of fundamental knowledge vis-a-vis the role of peripheral influences in the control of the respiratory CPG is due in large part to the complexity of mammalian respiratory control centres. We have therefore developed a simpler invertebrate model to study the basic cellular and synaptic mechanisms by which a peripheral chemosensory input affects the central respiratory CPG. Here we report on the identification and characterization of peripheral chemoreceptor cells (PCRCs) that relay hypoxia-sensitive chemosensory information to the known respiratory CPG neuron right pedal dorsal 1 in the mollusk Lymnaea stagnalis. Selective perfusion of these PCRCs with hypoxic saline triggered bursting activity in these neurons and when isolated in cell culture these cells also demonstrated hypoxic sensitivity that resulted in membrane depolarization and spiking activity. When cocultured with right pedal dorsal 1, the PCRCs developed synapses that exhibited a form of short-term synaptic plasticity in response to hypoxia. Finally, osphradial denervation in intact animals significantly perturbed respiratory activity compared with their sham counterparts. This study provides evidence for direct synaptic connectivity between a peripheral regulatory element and a central respiratory CPG neuron, revealing a potential locus for hypoxia-induced synaptic plasticity underlying breathing behavior.


4. Bigot L. et al. Functional characterization of a short neuropeptide F-related receptor in a lophotrochozoan, the mollusk Crassostrea gigas // Journal of Experimental Biology. 2014. Vol. 217, № 16. P. 2974–2982.

Skip to Next Section Members of the short neuropeptide F (sNPF) family of peptides and their cognate receptors play key roles in a variety of physiological processes in arthropods. In silico screening of GigasDatabase, a specific expressed sequence tag database from the Pacific oyster Crassostrea gigas, resulted in the identification of a receptor (Cg-sNPFR-like) phylogenetically closely related to sNPF receptors (sNPFRs) of insects. A reverse endocrinology approach was undertaken to identify the peptide ligand(s) of this orphan receptor. Though structurally distinct from insect sNPFs, three RFamide peptides derived from the same precursor, i.e. GSLFRFamide, SSLFRFamide and GALFRFamide, specifically activate the receptor in a dose-dependent manner, with respective EC50 values (half-maximal effective concentrations) of 1.1, 2.1 and 4.1 ?mol l?1. We found that both Cg-sNPFR-like receptor and LFRFamide encoding transcripts are expressed in the oyster central nervous system and in other tissues as well, albeit at lower levels. Mass spectrometry analysis confirmed the wide distribution of LFRFamide mature peptides in several central and peripheral tissues. The Cg-sNPFR-like receptor was more abundantly expressed in ganglia of females than of males, and upregulated in starved oysters. In the gonad area, highest receptor gene expression occurred at the start of gametogenesis, when storage activity is maximal. Our results suggest that signaling of LFRFamide peptides through the Cg-sNPFR-like receptor might play a role in the coordination of nutrition, energy storage and metabolism in C. gigas, possibly by promoting storage at the expense of reproduction.


5. Deryckere A., Seuntjens E. The Cephalopod Large Brain Enigma: Are Conserved Mechanisms of Stem Cell Expansion the Key? // Front. Physiol. 2018. Vol. 9.

Within the clade of mollusks, cephalopods have developed an unusually large and complex nervous system. The increased complexity of the cephalopod centralized “brain” parallels an amazing amount of seemingly intelligent behaviors that culminate in one order, the octopods. The mechanisms that enable evolution of expanded brains in invertebrates remain enigmatic. While expression mapping of known molecular pathways demonstrated the conservation of major neurogenesis pathways and revealed neurogenic territories, it did not explain why cephalopods could massively increase their brain size compared to other mollusks. Such an increase is reminiscent of the expansion of the cerebral cortex in mammalians, which have enlarged their number and variety of neurogenic stem cells. We hypothesize that similar mechanisms might be at play in cephalopods and that focusing on the stem cell biology of cephalopod neurogenesis and genetic innovations might be smarter strategies to uncover the mechanism that has driven cephalopod brain expansion.


6. Focareta L., Cole A.G. Analyses of Sox-B and Sox-E Family Genes in the Cephalopod Sepia officinalis: Revealing the Conserved and the Unusual // PLOS ONE. 2016. Vol. 11, № 6. P. e0157821.

Cephalopods provide an unprecedented opportunity for comparative studies of the developmental genetics of organ systems that are convergent with analogous vertebrate structures. The Sox-family of transcription factors is an important class of DNA-binding proteins that are known to be involved in many aspects of differentiation, but have been largely unstudied in lophotrochozoan systems. Using a degenerate primer strategy we have isolated coding sequence for three members of the Sox family of transcription factors from a cephalopod mollusk, the European cuttlefish Sepia officinalis: Sof-SoxE, Sof-SoxB1, and Sof-SoxB2. Analyses of their expression patterns during organogenesis reveals distinct spatial and temporal expression domains. Sof-SoxB1 shows early ectodermal expression throughout the developing epithelium, which is gradually restricted to presumptive sensory epithelia. Expression within the nervous system appears by mid-embryogenesis. Sof-SoxB2 expression is similar to Sof-SoxB1 within the developing epithelia in early embryogenesis, however appears in largely non-overlapping expression domains within the central nervous system and is not expressed in the maturing sensory epithelium. In contrast, Sof-SoxE is expressed throughout the presumptive mesodermal territories at the onset of organogenesis. As development proceeds, Sof-SoxE expression is elevated throughout the developing peripheral circulatory system. This expression disappears as the circulatory system matures, but expression is maintained within undifferentiated connective tissues throughout the animal, and appears within the nervous system near the end of embryogenesis. SoxB proteins are widely known for their role in neural specification in numerous phylogenetic lineages. Our data suggests that Sof-SoxB genes play similar roles in cephalopods. In contrast, Sof-SoxE appears to be involved in the early stages of vasculogenesis of the cephalopod closed circulatory system, a novel role for a member of this gene family.


7. Focareta L., Cole A.G. Analyses of Sox-B and Sox-E Family Genes in the Cephalopod Sepia officinalis: Revealing the Conserved and the Unusual // PLOS ONE. 2016. Vol. 11, № 6. P. e0157821.

Cephalopods provide an unprecedented opportunity for comparative studies of the developmental genetics of organ systems that are convergent with analogous vertebrate structures. The Sox-family of transcription factors is an important class of DNA-binding proteins that are known to be involved in many aspects of differentiation, but have been largely unstudied in lophotrochozoan systems. Using a degenerate primer strategy we have isolated coding sequence for three members of the Sox family of transcription factors from a cephalopod mollusk, the European cuttlefish Sepia officinalis: Sof-SoxE, Sof-SoxB1, and Sof-SoxB2. Analyses of their expression patterns during organogenesis reveals distinct spatial and temporal expression domains. Sof-SoxB1 shows early ectodermal expression throughout the developing epithelium, which is gradually restricted to presumptive sensory epithelia. Expression within the nervous system appears by mid-embryogenesis. Sof-SoxB2 expression is similar to Sof-SoxB1 within the developing epithelia in early embryogenesis, however appears in largely non-overlapping expression domains within the central nervous system and is not expressed in the maturing sensory epithelium. In contrast, Sof-SoxE is expressed throughout the presumptive mesodermal territories at the onset of organogenesis. As development proceeds, Sof-SoxE expression is elevated throughout the developing peripheral circulatory system. This expression disappears as the circulatory system matures, but expression is maintained within undifferentiated connective tissues throughout the animal, and appears within the nervous system near the end of embryogenesis. SoxB proteins are widely known for their role in neural specification in numerous phylogenetic lineages. Our data suggests that Sof-SoxB genes play similar roles in cephalopods. In contrast, Sof-SoxE appears to be involved in the early stages of vasculogenesis of the cephalopod closed circulatory system, a novel role for a member of this gene family.


8. Gillette R., Brown J.W. The Sea Slug, Pleurobranchaea californica?: A Signpost Species in the Evolution of Complex Nervous Systems and Behavior // Integr Comp Biol. 2015. Vol. 55, № 6. P. 1058–1069.

How and why did complex brain and behavior evolve? Clues emerge from comparative studies of animals with simpler morphology, nervous system, and behavioral economics. The brains of vertebrates, arthropods, and some annelids have highly derived executive structures and function that control downstream, central pattern generators (CPGs) for locomotion, behavioral choice, and reproduction. For the vertebrates, these structures—cortex, basal ganglia, and hypothalamus—integrate topographically mapped sensory inputs with motivation and memory to transmit complex motor commands to relay stations controlling CPG outputs. Similar computations occur in the central complex and mushroom bodies of the arthropods, and in mammals these interactions structure subjective thought and socially based valuations. The simplest model systems available for comparison are opisthobranch molluscs, which have avoided selective pressure for complex bodies, brain, and behavior through potent chemical defenses. In particular, in the sea-slug Pleurobranchaea californica the functions of vertebrates’ olfactory bulb and pallium are performed in the peripheral nervous system (PNS) of the chemotactile oral veil. Functions of hypothalamus and basal ganglia are combined in Pleurobranchaea ’s feeding motor network. The actions of basal ganglia on downstream locomotor regions and spinal CPGs are analogous to Pleurobranchaea ’s feeding network actions on CPGs for agonist and antagonist behaviors. The nervous systems of opisthobranch and pulmonate gastropods may conserve or reflect relations of the ancestral urbilaterian. Parallels and contrasts in neuronal circuits for action selection in Pleurobranchaea and vertebrates suggest how a basic set of decision circuitry was built upon in evolving segmentation, articulated skeletons, sociality, and highly invested reproductive strategies. They suggest (1) an origin of olfactory bulb and pallium from head-region PNS; (2) modularization of an ancestral feeding network into discrete but interacting executive modules for incentive comparison and decision (basal ganglia), and homeostatic functions (hypothalamus); (3) modification of a multifunctional premotor network for turns and locomotion, and its downstream targets for mid-brain and hind-brain motor areas and spinal CPGs; (4) condensation of a distributed serotonergic network for arousal into the raphe nuclei, with superimposed control by a peptidergic hypothalamic network mediating appetite and arousal; (5) centralization and condensation of the dopaminergic sensory afferents of the PNS, and/or the disperse dopaminergic elements of central CPGs, into the brain nuclei mediating valuation, reward, and motor arousal; and (6) the urbilaterian possessed the basic circuit relations integrating sensation, internal state, and learning for cost-benefit approach-avoidance decisions.


9. Glebov K. et al. Mechanisms underlying dual effects of serotonin during development of Helisoma trivolvis(Mollusca) // BMC Developmental Biology. 2014. Vol. 14, № 1. P. 14.

Serotonin (5-HT) is well known as widely distributed modulator of developmental processes in both vertebrates and invertebrates. It is also the earliest neurotransmitter to appear during neuronal development. In aquatic invertebrates, which have larvae in their life cycle, 5-HT is involved in regulation of stages transition including larval metamorphosis and settlement. However, molecular and cellular mechanisms underlying developmental transition in aquatic invertebrate species are yet poorly understood. Earlier we demonstrated that in larvae of freshwater molluscs and marine polychaetes, endogenous 5-HT released from the neurons of the apical sensory organ (ASO) in response to external stimuli retarded larval development at premetamorphic stages, and accelerated it at metamorphic stages. Here we used a freshwater snail Helisoma trivolvis to study molecular mechanisms underlying these dual developmental effects of 5-HT.


10. Green D.J. et al. cAMP, Ca2+, pHi, and NO Regulate H-like Cation Channels That Underlie Feeding and Locomotion in the Predatory Sea Slug Pleurobranchaea californica // ACS Chem. Neurosci. 2018. Vol. 9, № 8. P. 1986–1993.

A systems approach to regulation of neuronal excitation in the mollusc Pleurobranchaea has described novel interactions of cyclic AMP-gated cation current (INa,cAMP), Ca2+, pHi, and NO. INa,cAMP appears in many neurons of feeding and locomotor neuronal networks. It is likely one of the family of hyperpolarization-activated, cyclic-nucleotide-gated currents (h-current) of vertebrate and invertebrate pacemaker networks. There are two isoforms. Ca2+ regulates both voltage dependence and depolarization-sensitive inactivation in both isoforms. The Type 1 INa,cAMP of the feeding network is enhanced by intracellular acidification. A direct dependence of INa,cAMP on cAMP allows the current to be used as a reporter on cAMP concentrations in the cell, and from there to the intrinsic activities of the synthetic adenyl cyclase and the degradative phosphodiesterase. Type 2 INa,cAMP of the locomotor system is activated by serotonergic inputs, while Type 1 of the feeding network is thought to be regulated peptidergically. NO synthase activity is high in the CNS, where it differs from standard neuronal NO synthase in not being Ca2+ sensitive. NO acidifies pHi, potentiating Type 1, and may act to open proton channels. A cGMP pathway does not mediate NO effects as in other systems. Rather, nitrosylation likely mediates its actions. An integrated model of the action of cAMP, Ca2+, pHi, and NO in the feeding network postulates that NO regulates proton conductance to cause neuronal excitation in the cell body on the one hand, and relief of activity-induced hyperacidification in fine dendritic processes on the other.


11. Greer J.B., Schmale M.C., Fieber L.A. Whole-transcriptome changes in gene expression accompany aging of sensory neurons in Aplysia californica // BMC Genomics. 2018. Vol. 19, № 1. P. 529.

Large-scale molecular changes occur during aging and have many downstream consequences on whole-organism function, such as motor function, learning, and memory. The marine mollusk Aplysia californica can be used to study transcriptional changes that occur with age in identified neurons of the brain, because its simplified nervous system allows for more direct correlations between molecular changes, physiological changes, and their phenotypic outcomes. Behavioral deficits in the tail-withdrawal reflex of aged animals have been correlated with reduced excitation in sensory neurons that control the reflex. RNASeq was used to investigate whole-transcriptome changes in tail-withdrawal sensory neurons of sexually mature and aged Aplysia to correlate transcriptional changes with reduced behavioral and physiological responses.


12. Hindinger S., Schwaha T., Wanninger A. Immunocytochemical studies reveal novel neural structures in nemertean pilidium larvae and provide evidence for incorporation of larval components into the juvenile nervous system // Frontiers in Zoology. 2013. Vol. 10, № 1. P. 31.

Nemertea is one of the least studied lophotrochozoan phyla concerning neurogenesis. The sparse data available do not unambiguously allow for answering questions with respect to the neural groundplan of the phylum or the fate of larval neural structures during metamorphosis. In order to contribute to this issue, we studied neurotransmitter distribution during development of the pilidiophoran Lineus albocinctus Verrill, 1900.


13. Janesick A., Wu S.C., Blumberg B. Retinoic acid signaling and neuronal differentiation // Cell. Mol. Life Sci. 2015. Vol. 72, № 8. P. 1559–1576.

The identification of neurological symptoms caused by vitamin A deficiency pointed to a critical, early developmental role of vitamin A and its metabolite, retinoic acid (RA). The ability of RA to induce post-mitotic, neural phenotypes in various stem cells, in vitro, served as early evidence that RA is involved in the switch between proliferation and differentiation. In vivo studies have expanded this “opposing signal” model, and the number of primary neurons an embryo develops is now known to depend critically on the levels and spatial distribution of RA. The proneural and neurogenic transcription factors that control the exit of neural progenitors from the cell cycle and allow primary neurons to develop are partly elucidated, but the downstream effectors of RA receptor (RAR) signaling (many of which are putative cell cycle regulators) remain largely unidentified. The molecular mechanisms underlying RA-induced primary neurogenesis in anamniote embryos are starting to be revealed; however, these data have been not been extended to amniote embryos. There is growing evidence that bona fide RARs are found in some mollusks and other invertebrates, but little is known about their necessity or functions in neurogenesis. One normal function of RA is to regulate the cell cycle to halt proliferation, and loss of RA signaling is associated with dedifferentiation and the development of cancer. Identifying the genes and pathways that mediate cell cycle exit downstream of RA will be critical for our understanding of how to target tumor differentiation. Overall, elucidating the molecular details of RAR-regulated neurogenesis will be decisive for developing and understanding neural proliferation–differentiation switches throughout development.


14. Kristof A. et al. Neuromuscular development in Patellogastropoda (Mollusca: Gastropoda) and its importance for reconstructing ancestral gastropod bodyplan features // Journal of Zoological Systematics and Evolutionary Research. 2016. Vol. 54, № 1. P. 22–39.

Within Gastropoda, limpets (Patellogastropoda) are considered the most basal branching taxon and its representatives are thus crucial for research into evolutionary questions. Here, we describe the development of the neuromuscular system in Lottia cf. kogamogai. In trochophore larvae, first serotonin-like immunoreactivity (lir) appears in the apical organ and in the prototroch nerve ring. The arrangement and number of serotonin-lir cells in the apical organ (three flask-shaped, two round cells) are strikingly similar to those in putatively derived gastropods. First, FMRFamide-lir appears in veliger larvae in the Anlagen of the future adult nervous system including the cerebral and pedal ganglia. As in other gastropods, the larvae of this limpet show one main and one accessory retractor as well as a pedal retractor and a prototroch muscle ring. Of these, only the pedal retractor persists until after metamorphosis and is part of the adult shell musculature. We found a hitherto undescribed, paired muscle that inserts at the base of the foot and runs towards the base of the tentacles. An apical organ with flask-shaped cells, one main and one accessory retractor muscle is commonly found among gastropod larvae and thus might have been part of the last common ancestor.


15. Lakshminarasimhan H. et al. Characterization and reversal of Doxorubicin-mediated biphasic activation of ERK and persistent excitability in sensory neurons of Aplysia californica // Scientific Reports. 2017. Vol. 7, № 1. P. 4533.

Doxorubicin (DOX), a common chemotherapeutic agent, impairs synaptic plasticity. DOX also causes a persistent increase in basal neuronal excitability, which occludes serotonin-induced enhanced excitability. Therefore, we sought to characterize and reverse DOX-induced physiological changes and modulation of molecules implicated in memory induction using sensory neurons from the marine mollusk Aplysia californica. DOX produced two mechanistically distinct phases of extracellular signal-regulated kinase (ERK) activation, an early and a late phase. Inhibition of MEK (mitogen-activated protein kinase (MAPK)/ERK kinase) after DOX treatment reversed the late ERK activation. MEK inhibition during treatment enhanced the late ERK activation possibly through prolonged downregulation of MAPK phosphatase-1 (MKP-1). Unexpectedly, the late ERK activation negatively correlated with excitability. MEK inhibition during DOX treatment simultaneously enhanced the late activation of ERK and blocked the increase in basal excitability. In summary, we report DOX-mediated biphasic activation of ERK and the reversal of the associated changes in neurons, a potential strategy for reversing the deleterious effects of DOX treatment.


16. Liu Z. et al. The enkephalinergic nervous system and its immunomodulation on the developing immune system during the ontogenesis of oyster Crassostrea gigas // Fish & Shellfish Immunology. 2015. Vol. 45, № 2. P. 250–259.

Enkephalinergic neuroendocrine-immune regulatory system is one of the most important neuroendocrine-immune systems in both vertebrates and invertebrates for its significant role in the immune regulation. In the present study, the early onset of enkephalinergic nervous system and its immunomodulation on the developing immune system during the ontogenesis of oyster Crassostrea gigas were investigated to illustrate the function of neural regulation on the innate immune system in oyster larvae. [Met5]-enkephalin (Met-ENK) was firstly observed on the marginal of the dorsal half of D-hinged larvae. Six immune-related molecules, including four PRRs (CgCTL-1, CgCTL-2, CgCTL-4, CgNatterin-3) and two immune effectors (CgTNF-1 and CgEcSOD) were detected in the early developmental stages of trochophore, D-hinged and umbo larvae of oyster. After incubated with [Met5]-enkephalin, the mRNA expression level of all the PRRs changed significantly (p < 0.05). In trochophore larvae, the expression level of CgNatterin-3 decreased dramatically (p < 0.05) at 6 h, and the expression level of CgCTL-4 was significantly down-regulated at 3 h and 6 h (p < 0.05), respectively. In D-hinged and umbo larvae, only CgCTL-1 was significantly down-regulated and the differences were significant at 3 h and 6 h (p < 0.05), while the expression level of CgCTL-2 and CgCTL-4 increased significantly at 3 h after treatment (p < 0.05). Moreover, the expression levels of immune effectors were up-regulated significantly at 3 h and 6 h in trochophore larvae (p < 0.05). The expression level of CgTNF-1 in both blank and experiment groups was up-regulated but there was no significant difference in D-hinged larvae stage. On the contrary, the expression level of CgEcSOD in D-hinged larvae decreased dramatically at 3 h and 6 h after [Met5]-enkephalin incubation (p < 0.05). In umbo larvae, the expression level of CgTNF-1 and CgEcSOD in the experiment group increased significantly at 6 h after [Met5]-enkephalin treatment (p < 0.05), while no significant difference was found in the blank group. In addition, the anti-bacterial activities of the total protein extract from trochophore, D-hinged and umbo larvae increased significantly (p < 0.05) at both 3 h and 6 h after [Met5]-enkephalin incubation compared to that in the blank group, and PO activities of both D-hinged and umbo larvae total protein extract increased significantly (p < 0.05) while no significant difference was observed in trochophore larvae. The PO activities of the total protein extract in all the experiment groups decreased after the treatment with [Met5]-enkephalin for 6 h, but no significant difference was observed when compared to the blank group. Furthermore, after incubation for 6 h, the concentration of both CgTNF-1 and CgIL17-5 increased dramatically compared to that in the blank group (p < 0.05). These results together indicated that the enkephalinergic nervous system of oyster was firstly appeared in D-hinged larvae, while the primitive immune defense system existed in the region of prototroch in trochophore larvae and developed maturely after D-hinged larvae. The developing immune system could be regulated by the neurotransmitter [Met5]-enkephalin released by the neuroendocrine system in oyster C. gigas.


17. Lothet E.H. et al. Selective inhibition of small-diameter axons using infrared light // Scientific Reports. 2017. Vol. 7, № 1. P. 3275.

Novel clinical treatments to target peripheral nerves are being developed which primarily use electrical current. Recently, infrared (IR) light was shown to inhibit peripheral nerves with high spatial and temporal specificity. Here, for the first time, we demonstrate that IR can selectively and reversibly inhibit small-diameter axons at lower radiant exposures than large-diameter axons. We provide a mathematical rationale, and then demonstrate it experimentally in individual axons of identified neurons in the marine mollusk Aplysia californica, and in axons within the vagus nerve of a mammal, the musk shrew Suncus murinus. The ability to selectively, rapidly, and reversibly control small-diameter sensory fibers may have many applications, both for the analysis of physiology, and for treating diseases of the peripheral nervous system, such as chronic nausea, vomiting, pain, and hypertension. Moreover, the mathematical analysis of how IR affects the nerve could apply to other techniques for controlling peripheral nerve signaling.


18. Marlow H. et al. Larval body patterning and apical organs are conserved in animal evolution // BMC Biology. 2014. Vol. 12, № 1. P.7.

Planktonic ciliated larvae are characteristic for the life cycle of marine invertebrates. Their most prominent feature is the apical organ harboring sensory cells and neurons of largely undetermined function. An elucidation of the relationships between various forms of primary larvae and apical organs is key to understanding the evolution of animal life cycles. These relationships have remained enigmatic due to the scarcity of comparative molecular data.


19. Monjo F., Romero R. Embryonic development of the nervous system in the planarian Schmidtea polychroa // Developmental Biology. 2015. Vol. 397, № 2. P. 305–319.

The development of a nervous system is a key innovation in the evolution of metazoans, which is illustrated by the presence of a common developmental toolkit for the formation of this organ system. Neurogenesis in the Spiralia, in particular the Platyhelminthes, is, however, poorly understood when compared with other animal groups. Here, we characterize embryonic neurogenesis in the freshwater flatworm Schmidtea polychroa and analyze the expression of soxB and a set of proneural bHLH genes, which are gene families with a well-established role in metazoan early neural development. We show that the nervous system is fully de novo assembled after the early embryo ingests the maternal nutrients. At early stages of neurogenesis, soxB1 genes are expressed in putative neural progenitor cells, whereas soxB2 and neural bHLH genes (achaete-scute, neuroD and beta3) are associated with late neurogenesis and the specification of neural subpopulations of the central and peripheral nervous system. Our findings are consistent with the role of proneural genes in other bilaterians, suggesting that the ancestral neural-specific gene regulatory network is conserved in triclads, despite exhibiting a divergent mode of development.


20. Nagasawa K. et al. Characterization of GnRH-like peptides from the nerve ganglia of Yesso scallop, Patinopecten yessoensis // Peptides. 2015. Vol. 71. P. 202–210.

There is yet no firm experimental evidence that the evolutionary ancient gonadotropin-releasing hormone GnRH (i.e., GnRH1) also acts in invertebrate gametogenesis. The objective of this paper is to characterize candidate invGnRH peptides of Yesso scallop Patinopecten yessoensis (i.e., peptide identification, immunohistochemical localization, and immunoquantification) in order to reveal their bioactive form in bivalves. Using mass spectrometry (MS), we identified two invGnRH (py-GnRH) peptides from the scallop nerve ganglia: a precursor form of py-GnRH peptide (a non-amidated dodecapeptide; py-GnRH12aa-OH) and a mature py-GnRH peptide (an amidated undecapeptide; py-GnRH11aa-NH2). Immunohistochemical staining allowed the localization of both py-GnRH peptides in the neuronal cell bodies and fibers of the cerebral and pedal ganglia (CPG) and the visceral ganglion (VG). We found that the peptides showed a dimorphic distribution pattern. Notably, the broad distribution of mature py-GnRH in neuronal fibers elongating to peripheral organs suggests that it is multi-functional. Time-resolved fluorescent immunoassays (TR-FIA) enabled the quantification of each py-GnRH form in the single CPG or VG tissue obtained from one individual. In addition, we observed greater abundance of mature py-GnRH in VG compared with its level in CPG, suggesting that VG is the main producing organ of mature py-GnRH peptide and that py-GnRH may play a central regulatory role in neurons of scallops. Our study provides evidence, for the first time, for the presence of precursor and mature forms of invGnRH peptides in the nerve ganglia of an invertebrate.


21. Pavlicek A., Schwaha T., Wanninger A. Towards a ground pattern reconstruction of bivalve nervous systems: neurogenesis in the zebra mussel Dreissena polymorpha // Organisms Diversity & Evolution. 2018. Vol. 18, № 1. P. 101–114.

Bivalvia is a taxon of aquatic mollusks that includes clams, oysters, mussels, and scallops. Within heterodont bivalves, Dreissena polymorpha is a small, mytiliform, freshwater mussel that develops indirectly via a planktotrophic veliger larva. Currently, only a few studies on bivalve neurogenesis are available, impeding the reconstruction of a ground pattern in Bivalvia. In order to inject novel data into this discussion, we describe herein the development of the serotonin-like and ?-tubulin-like immunoreactive (lir) neuronal components of D. polymorpha from the early trochophore to the late veliger stage. Neurogenesis starts in the early trochophore stage at the apical pole with the appearance of one flask-shaped serotonin-lir cell. When larvae reach the veliger stage, four flask-shaped serotonin-lir cells are present in the apical organ. At the same time, the anlagen of the cerebral ganglia start to form at the base of the apical organ. From the apical organ, one pair of cerebro-visceral connectives projects posteriorly and connects to a posterior larval sensory organ that contains serotonin- and ?-tubulin-like flask-shaped cells. Additional, paired serotonin-lir neurites originate from the apical organ and project into the velum. One unpaired stomatogastric serotonin-lir cell develops ventrally to the stomach at the veliger stage. The low number of serotonin-lir cells in the apical organ of bivalve veligers is shared with larvae of basally branching gastropods and scaphopods and is thus considered a feature of the last common ancestor of Conchifera, while the overall simplicity of the larval neural architecture appears to be a specific trait of Bivalvia.


22. Scaros A.T., Croll R.P., Baratte S. Immunohistochemical Approach to Understanding the Organization of the Olfactory System in the Cuttlefish, Sepia officinalis // ACS Chem. Neurosci. 2018. Vol. 9, № 8. P. 2074–2088.

Cephalopods are nontraditional but captivating models of invertebrate neurobiology, particularly in evolutionary comparisons. Cephalopod olfactory systems have striking similarities and fundamental differences with vertebrates, arthropods, and gastropods, raising questions about the ancestral origins of those systems. We describe here the organization and development of the olfactory system of the common cuttlefish, Sepia officinalis, using immunohistochemistry and in situ hybridization. FMRFamide and/or related peptides and histamine are putative neurotransmitters in olfactory sensory neurons. Other neurotransmitters, including serotonin and APGWamide within the olfactory and other brain lobes, suggest efferent control of olfactory input and/or roles in the processing of olfactory information. The distributions of neurotransmitters, along with staining patterns of phalloidin, anti-acetylated ?-tubulin, and a synaptotagmin riboprobe, help to clarify the structure of the olfactory lobe. We discuss a key difference, the lack of identifiable olfactory glomeruli, in cuttlefish in comparison to other models, and suggest its implications for the evolution of olfaction.


23. Scherholz M. et al. Ancestral and novel roles of Pax family genes in mollusks // BMC Evolutionary Biology. 2017. Vol. 17, № 1. P. 81.

Pax genes are transcription factors with significant roles in cell fate specification and tissue differentiation during animal ontogeny. Most information on their tempo-spatial mode of expression is available from well-studied model organisms where the Pax-subfamilies Pax2/5/8, Pax6, and Pax?/? are mainly involved in the development of the central nervous system (CNS), the eyes, and other sensory organs. In certain taxa, Pax2/5/8 seems to be additionally involved in the development of excretion organs. Data on expression patterns in lophotrochozoans, and in particular in mollusks, are very scarce for all the above-mentioned Pax-subfamilies, which hampers reconstruction of their putative ancestral roles in bilaterian animals. Thus, we studied the developmental expression of Pax2/5/8, Pax6, and the lophotrochozoan-specific Pax? in the worm-shaped mollusk Wirenia argentea, a member of Aplacophora that together with Polyplacophora forms the Aculifera, the proposed sister taxon to all primarily single-shelled mollusks (Conchifera).


24. Swart C.C. et al. Lifelong neurogenesis in the cerebral ganglion of the Chinese mud snail, Cipangopaludina chinensis // Brain and Behavior. 2017. Vol. 7, № 4. P. e00652.

A small group of Gastropods possessing giant neurons have long been used to study a wide variety of fundamental neurophysiological phenomena. However, the majority of gastropods do not have large neurons but instead have large numbers of small neurons and remain largely unstudied. We explored neuron size and rate of increase in neuron numbers in the Chinese mud snail, Cipangopaludina chinensis. Methods Using histological sections and whole mounts of the cerebral ganglia, we collected cross-sectional data on neuron number and size across the lifespan of this animal. Neurogenesis was verified using Click-it EdU staining. Results We found that total neuron number in the cerebral ganglia increases throughout the lifespan of this species at a constant rate. New neurons arise primarily near the nerve roots. Females live longer (up to 7 years) than males (up to 5 years) and thus achieve larger numbers of neurons in the cerebral ganglion. Neuron size is consistently small (<10 ?m) in the cerebral ganglia at all ages, however, cells in the posterior section of the cerebral ganglia are modestly but significantly larger than cells at the anterior. Conclusions These features suggest that C. chinensis and similar species of Caenogastropoda are good candidates for studying gastropod neurogenesis, senescence, and sex differences in the nervous system.


25. Tuchina O.P., Zhukov V.V., Meyer-Rochow V.B. Central and peripheral neuronal pathways revealed by backfilling with neurobiotin in the optic, tentacular and small labial nerves of Lymnaea stagnalis // Acta Zool. 2012. Vol. 93, № 1. P. 28–47.

The TOLm complex in Lymnaea stagnalis contains nerves n. tentacularis, n. opticus and n. labialis minor. Ligatures close to where the complex enters the central nervous system (CNS) did not prevent penetration of retrograde?transported neurobiotin into fibres of an adjacent nerve. Axonal bifurcation within the common nerve trunk or tight junctions may be involved, providing a basis for peripheral axon reflexes. Peripheral terminations of n. tentacularis, n. labialis minor and n. opticus revealed numerous cell bodies in the tentacular epithelium, some in the tentacle and lip region, and some in the retina. These cell bodies’ central projections were mapped by neurobiotin and verified by dissections of the cerebro?cerebral commissure and cerebro?pleural connective. Afferent fibres of the nerves form dense sensory neuropils in the ipsilateral cerebral ganglia. Direct connections between n. tentacularis and some visceral as well as parietal nerves were demonstrated by backfillings through n. pallialis dexter internus et externus, n. pallialis sinister and n. intestinalis. Labelling of n. tentacularis revealed neuronal bodies in every ganglion and stained fibres in most of the peripheral nerves. Fewer neurons were identified through n. labialis minor and n. opticus. We discuss our results in relation to different behavioural forms like defence and feeding reactions in L. stagnalis.


26. Vaasjo L.O. et al. GABA-like immunoreactivity in Biomphalaria: Colocalization with tyrosine hydroxylase-like immunoreactivity in the feeding motor systems of panpulmonate snails // Journal of Comparative Neurology. 2018. Vol. 526, № 11. P. 1790–1805.

The simpler nervous systems of certain invertebrates provide opportunities to examine colocalized classical neurotransmitters in the context of identified neurons and well defined neural circuits. This study examined the distribution of ?-aminobutyric acid-like immunoreactivity (GABAli) in the nervous system of the panpulmonates Biomphalaria glabrata and Biomphalaria alexandrina, major intermediate hosts for intestinal schistosomiasis. GABAli neurons were localized in the cerebral, pedal, and buccal ganglia of each species. With the exception of a projection to the base of the tentacle, GABAli fibers were confined to the CNS. As GABAli was previously reported to be colocalized with markers for dopamine (DA) in five neurons in the feeding network of the euopisthobranch gastropod Aplysia californica (Diaz-Rios, Oyola, & Miller, 2002), double-labeling protocols were used to compare the distribution of GABAli with tyrosine hydroxylase immunoreactivity (THli). As in Aplysia, GABAli-THli colocalization was limited to five neurons, all of which were located in the buccal ganglion. Five GABAli-THli cells were also observed in the buccal ganglia of two other intensively studied panpulmonate species, Lymnaea stagnalis and Helisoma trivolvis. These findings indicate that colocalization of the classical neurotransmitters GABA and DA in feeding central pattern generator (CPG) interneurons preceded the divergence of euopisthobranch and panpulmonate taxa. These observations also support the hypothesis that heterogastropod feeding CPG networks exhibit a common universal design.


27. Vallejo D. et al. Localization of tyrosine hydroxylase-like immunoreactivity in the nervous systems of Biomphalaria glabrata and Biomphalaria alexandrina, intermediate hosts for schistosomiasis // Journal of Comparative Neurology. 2014. Vol. 522, № 11. P. 2532–2552.

Planorbid snails of the genus Biomphalaria are major intermediate hosts for the digenetic trematode parasite Schistosoma mansoni. Evidence suggests that levels of the neurotransmitter dopamine (DA) are reduced during the course of S. mansoni multiplication and transformation within the snail. This investigation used immunohistochemical methods to localize tyrosine hydroxylase (TH), the rate-limiting enzyme in the biosynthesis of catecholamines, in the nervous system of Biomphalaria. The two species examined, Biomphalaria glabrata and Biomphalaria alexandrina, are the major intermediate hosts for S. mansoni in sub-Saharan Africa, where more than 90% of global cases of human intestinal schistosomiasis occur. TH-like immunoreactive (THli) neurons were distributed throughout the central nervous system (CNS) and labeled fibers were present in all commissures, connectives, and nerves. Some asymmetries were observed, including a large distinctive neuron (LPeD1) in the pedal ganglion described previously in several pulmonates. The majority of TH-like immunoreactive neurons were detected in the peripheral nervous system (PNS), especially in lip and foot regions of the anterior integument. Independent observations supporting the dopaminergic phenotype of THli neurons included 1) block of LPeD1 synaptic signaling by the D2/3 antagonist sulpiride, and 2) the similar localization of aqueous aldehyde (FaGlu)-induced fluorescence. The distribution of THli neurons indicates that, as in other gastropods, dopamine functions as a sensory neurotransmitter and in the regulation of feeding and reproductive behaviors in Biomphalaria. It is hypothesized that infection could stimulate transmitter release from dopaminergic sensory neurons and that dopaminergic signaling could contribute to modifications of both host and parasite behavior.


28. Webber M.P. et al. GABA-, histamine-, and FMRFamide-immunoreactivity in the visual, vestibular and central nervous systems of Hermissenda crassicornis // Journal of Comparative Neurology. 2017. Vol. 525, № 16. P. 3514–3528.

Hermissenda crassicornis is a model for studying the molecular and cellular basis for classical conditioning, based on its ability to associate light with vestibular stimulation. We used confocal microscopy to map histamine (HA), FMRF-amide, and ?-aminobutyric acid (GABA) immunoreactivity in the central nervous system (CNS), eyes, optic ganglia and statocysts of the nudibranchs. For HA immunoreactivity, we documented both consistently and variably labeled CNS structures across individuals. We also noted minor differences in GABA immunoreactivity in the CNS compared to previous work on Hermissenda. Contrary to expectations, we found no evidence for GABA inside the visual or vestibular systems. Instead, we found only FMRFamide- and HA immunoreactivity (FMRFamide: 4 optic ganglion cells, 4–5 hair cells; HA: 3 optic ganglion cells, 8 hair cells). Overall, our results can act as basis for comparisons of nervous systems across nudibranchs, and suggest further exploration of intraspecific plasticity versus evolutionary changes in gastropod nervous systems.


29. Wollesen T. et al. Ancestral role of Pax2/5/8 in molluscan brain and multimodal sensory system development // BMC Evolutionary Biology. 2015. Vol. 15, № 1. P. 231.

Mollusks represent the largest lophotrochozoan phylum and exhibit highly diverse body plans. Previous studies have demonstrated that transcription factors such as Pax genes play important roles during their development. Accordingly, in ecdysozoan and vertebrate model organisms, orthologs of Pax2/5/8 are among others involved in the formation of the midbrain/hindbrain boundary, the auditory/geosensory organ systems, and the excretory system.


30. Wollesen T. et al. POU genes are expressed during the formation of individual ganglia of the cephalopod central nervous system // EvoDevo. 2014. Vol. 5, № 1. P. 41.

Among the Lophotrochozoa, cephalopods possess the highest degree of central nervous system (CNS) centralization and complexity. Although the anatomy of the developing cephalopod CNS has been investigated, the developmental mechanisms underlying brain development and evolution are unknown. POU genes encode key transcription factors controlling nervous system development in a range of bilaterian species, including lophotrochozoans. In this study, we investigate the expression of POU genes during early development of the pygmy squid Idiosepius notoides and make comparisons with other bilaterians to reveal whether these genes have conserved or divergent roles during CNS development in this species.


31. Yurchenko O.V. et al. Nervous system development in the Pacific oyster, Crassostrea gigas (Mollusca: Bivalvia) // Frontiers in Zoology. 2018. Vol. 15, № 1. P. 10.

Bivalves comprise a large, highly diverse taxon of invertebrate species. Developmental studies of neurogenesis among species of Bivalvia are limited. Due to a lack of neurogenesis information, it is difficult to infer a ground pattern for Bivalvia. To provide more comprehensive morphogenetic data on bivalve molluscs and relationships among molluscan clades, we investigated neurogenesis in the Pacific oyster, Crassostrea gigas, from the appearance of the first sensory cells to the formation of the larval ganglionic nervous system by co-immunocytochemistry of the neuronal markers FMRFamide or 5-HT and vesicular acetylcholine transporter (VAChT).


32. Zatylny-Gaudin C., Favrel P. Diversity of the RFamide Peptide Family in Mollusks // Front. Endocrinol. 2014. Vol. 5.

Since the initial characterization of the cardioexcitatory peptide FMRFamide in the bivalve mollusk Macrocallista nimbosa, a great number of FMRFamide-like peptides (FLPs) has ibeen identified in mollusks. FLPs were initially isolated and molecularly characterized in model mollusks using biochemical methods. The development of recombinant technologies and more recently of genomics has boosted knowledge on their diversity in various mollusk classes. Today, mollusk FLPs represent approximately 75 distinct RFamide peptides that appear to result from the expression of only five genes: the FMRFamide-related peptide (FaRP) gene, the LFRFamide gene, the luqin gene, the neuropeptide F (NPF) gene and the cholecystokinin/sulfakinin (CCK/SK) gene. FLPs display a complex spatiotemporal pattern of expression in the central and peripheral nervous system. Working either as neurotransmitters, neuromodulators or neurohormones, FLPs are involved in the control of a great variety of biological and physiological processes including cardiovascular regulation, osmoregulation, reproduction, digestion and feeding behavior. From an evolutionary viewpoint the major challenge will then logically concern the elucidation of the FLP repertoire of orphan mollusk classes and the way they are functionally related. In this respect, deciphering FLP signaling pathways by characterizing the specific receptors these peptides bind remains another exciting objective.


33. Zhang L. et al. Subcellular Peptide Localization in Single Identified Neurons by Capillary Microsampling Mass Spectrometry // Scientific Reports. 2018. Vol. 8, № 1. P. 12227.

Single cell mass spectrometry (MS) is uniquely positioned for the sequencing and identification of peptides in rare cells. Small peptides can take on different roles in subcellular compartments. Whereas some peptides serve as neurotransmitters in the cytoplasm, they can also function as transcription factors in the nucleus. Thus, there is a need to analyze the subcellular peptide compositions in identified single cells. Here, we apply capillary microsampling MS with ion mobility separation for the sequencing of peptides in single neurons of the mollusk Lymnaea stagnalis, and the analysis of peptide distributions between the cytoplasm and nucleus of identified single neurons that are known to express cardioactive Phe-Met-Arg-Phe amide-like (FMRFamide-like) neuropeptides. Nuclei and cytoplasm of Type 1 and Type 2?F group (Fgp) neurons were analyzed for neuropeptides cleaved from the protein precursors encoded by alternative splicing products of the FMRFamide gene. Relative abundances of nine neuropeptides were determined in the cytoplasm. The nuclei contained six of these peptides at different abundances. Enabled by its relative enrichment in Fgp neurons, a new 28-residue neuropeptide was sequenced by tandem MS.


34. 006628
Богуславский Д.В., Захаров И.С. Педальные пептиды и их роль в центральной нервной системе моллюсков // Успехи современной биологии. 2015. Т. 135. № 3. С. 307–320.

Систематизированы результаты исследований семейства педальных пептидов за прошедшие двадцать пять лет с момента их открытия в 1989 году. Представлено сравнение особенностей строения самих пептидов этого семейства и системы клеток, синтезирующих пептиды данной группы у ряда моллюсков.


35. 041871
Ващенко М.А., Коцюба Е.П. Топография NO-синтазы в центральной нервной системе двустворчатых моллюсков в норме и при действии стресс-факторов // Тихоокеанский Медицинский Журнал. 2016. № 2 (64). С. 34–41.

В обзоре представлены результаты исследований нитроксидергической компоненты центральной нервной системы двустворчатых моллюсков, полученные с использованием устойчивой к альдегидам NADPH-диафоразы (NADPH-d) в качестве маркера NO-синтазы. Приведены данные о влиянии экологических стресс-факторов (гипертермии, гипоксии и антропогенного загрязнения) на топографию, количественные характеристики NADPH-d-позитивных нейронов и активность NADPH-d в центральной нервной системе двустворчатых моллюсков, а также на ультраструктуру нейронов, синаптическую пластичность и субклеточную локализацию NADPH-d.


36. 000617
Вислобоков А.И. и др. Изменения внутриклеточных потенциалов нейронов моллюска под влиянием гидрохлорида b-фенилглутаминовой кислоты // Бюллетень экспериментальной биологии и медицины. 2013. Т. 156. № 12. С. 672–676.

Гидрохлорид b-фенилглутаминовой кислоты -- вещество с лабораторным шифром РГПУ-135 (нейроглутамин, глутарон) -- в концентрациях 1, 10, 100 и 1000 мкМ дозозависимо и обратимо модулирует внутриклеточные потенциалы нейронов моллюска катушки роговой (Planorbarius corneus). Потенциал покоя возрастает на 9.1±2.5% (с максимумом при 100 мкМ). Гиперполяризация клеток сопровождается активацией синаптической активности, перестройкой импульсной активности со снижением ее частоты и межпачечных интервалов, увеличением числа импульсов в пачках и сокращением в них межимпульсных интервалов. Эффект гиперполяризации и перестройки импульсной активности после действия вещества РГПУ-135 сохраняется в течение 10-20 мин.


37. 010680
Горбачева Е.В. и др. Никотиновые холинорецепторы двух подтипов в нейронах прудовика Lymnaea stagnalis управляют хлорной проводимостью // Биологические мембраны: Журнал мембранной и клеточной биологии. 2018. Т. 35. № 4. С. 289–296.

Гигантские нейроны моллюска Lymnaea stagnalis содержат неоднородную популяцию никотиновых холинорецепторов (нХР), различающихся по относительной чувствительности к антагонистам. Все эти рецепторы вносят вклад в суммарный ответ на ацетилхолин (АХ). Для корректной оценки активности фармакологических агентов необходимо знать ионную селективность разных типов нХР, участвующих в генерации трансмембранного тока. В настоящей работе мы исследовали влияние ионного состава наружного и внутриклеточного растворов на амплитуду и вольт-амперную характеристику тока, активируемого АХ или другими агонистами нХР, в идентифицированных нейронах из левого и правого париетальных ганглиев. Полная замена ионов Na+ в наружном растворе на непроникающий катион N-метил-D-глюкамин (NMDGH+) не вызывала изменений в характеристиках тока. Уменьшение концентрации ионов Cl– в наружном растворе в 10 раз приводило к исчезновению выходящих токов при поддерживаемом потенциале до +30 мВ и существенному сдвигу вольт-амперной характеристики вправо. Уменьшение в 10 раз концентрации Cl– во внутриклеточном растворе, напротив, вызывало сдвиг вольт-амперной характеристики в сторону гиперполяризации: потенциал реверсии сдвигался в среднем на 42 мВ. Различий между изменениями характеристик тока, индуцированного АХ или агонистами с более высокой избирательностью в отношении ?7-типа нейронных нХР позвоночных и одного из двух подтипов нХР нейронов прудовика, мы не обнаружили. Нейроны, отличающиеся относительным содержанием того или иного подтипа нХР, реагировали на изменение концентрации Cl– одинаковым образом. Результаты подтверждают прежние данные о хлорном механизме ответов нейронов L. stagnalis на АХ и свидетельствуют в пользу идентичной ионной селективности двух подтипов нХР в идентифицированных нейронах.


38. 040205
Зачепило Т.Г. Регуляция ацетилирования гистона Н4 в центральной нервной системе и командных нейронах оборонительного поведения моллюска Helix серотонином и нейропептидом FMRFамидом // Вавиловский журнал генетики и селекции. 2018. Т. 22. № 5. С. 606–610.

Вовлеченность эпигенетических механизмов в формирование долговременной памяти не вызывает сомнений. В настоящее время среди этих механизмов наиболее активно исследуются изменения уровня различных гистоновых модификаций (в первую очередь, ацетилирования и метилирования) в составе хроматина клеток центральной нервной системы (ЦНС) на различных экспериментальных моделях. Одна из наиболее удобных моделей - моллюски, их ЦНС относительно просто устроена и для ряда видов достаточно хорошо охарактеризована. В работе в качестве объекта исследования использована ЦНС виноградной улитки (Helixlucorum), для которой ранее была выявлена группа нейронов, участвующих в формировании различных типов поведения, включая сохраняющийся во времени ответ на различные стимулы. Целью работы было изучение влияния известных эффекторов: серотонина и FMRFамида, связанных в ЦНС с активаторными и тормозными путями соответственно, на ацетилирование гистона Н4 в подглоточном комплексе ганглиев, а также в командных нейронах оборонительного поведения правого (ППа3/2) и левого (ЛПа3/2) париетальных ганглиев улитки. Исследование проводилось методом Вестерн-блот гибридизации. Полученные результаты указывают на сильную зависимость эффектов изучаемых нейромедиаторов от структур ЦНС, которые подвергались воздействию этих веществ. Так, оказалось, что в подглоточном комплексе ганглиев под действием серотонина происходило усиление суммарного ацетилирования гистона Н4, а FMRFамид подавлял его эффект. В противоположность этому, в командных нейронах правого париетального ганглия серотонин и FMRFамид усиливали действие друг друга, что приводило к существенному повышению уровня ацетилирования гистона Н4. Однако в симметричных нейронах левого париетального ганглия никаких изменений в уровне ацетилирования под действием обоих веществ не наблюдалось, что служит новым свидетельством наличия функциональной асимметрии у Helix. Результаты исследования позволяют сделать заключение о двоякой роли тормозных путей, опосредуемых FMRFамидом, в зависимости от контекста нейрональных комплексов, они могут как подавлять действие активаторных путей, что было зафиксировано нами в подглоточном комплексе ганглиев улитки, так и выступать в роли их синергистов, как в командных нейронах оборонительного поведения правого париетального ганглия.


39. 000477
Муртазина Л.И. и др. Водные и солевые растворы хинина низких концентраций: самоорганизация, физико-химические свойства и действие на электрические характеристики нейронов // Биофизика. 2014. Т. 59. № 4. С. 717–722.

Изучена самоорганизация, физико-химические свойства водных и солевых растворов хинина, а также влияние солевых растворов хинина в широкой области концентраций (1?10-22-1?10-3 М) на электрические характеристики идентифицированных нейронов виноградной улитки. Получены симбатные немонотонные концентрационные зависимости физико-химических свойств водных и солевых растворов хинина в области низких концентраций, позволяющие прогнозировать появление биоэффектов высокоразбавленных растворов хинина. Найдены достоверные (внутри 5%-го интервала) изменения мембранного потенциала, амплитуды и продолжительности потенциала действия нейронов под влиянием солевых растворов хинина в концентрациях 1?10-20, 1?10-18, 1?10-10 М, для которых показаны экстремальные значения удельной электропроводности и pН.


40. 005108
Незлин Л.П., Воронежская Е.Е. Ранние периферические сенсорные нейроны в развитии трохофорных животных // Онтогенез. 2017. Т. 48. № 2. С. 149–164.

У трохофорных животных, имеющих бифазный пелаго-бентический жизненный цикл, нейрогенез личиночной стадии начинается с дифференцировки ранних периферических нейронов, которые являются транзиторными и не входят в состав центральной нервной системы. Ранние нейроны локализованы чаще всего в апикальном сенсорном органе и в гипосфере. В случае, когда отростки нейронов образуют остов, вдоль которого затем формируется ЦНС взрослого животного, они являются пионерными. Иммунохимическое маркирование ранних нейронов у ряда видов моллюсков и полихет антителами против нейромедиаторов серотонина и FMRFамида в сочетании с антителами против ацетилированного ?-тубулина показало, что практически все ранние периферические нейроны имеют строение, характерное для сенсорных (вероятно хемосенсорных) нейронов: булавовидная форма, апикальный дендрит, выходящий на поверхность тела и имеющий терминальное утолщение, а также реснички на конце дендрита или в ампульной полости. Локализация, форма и медиаторная специфичность ранних сенсорных клеток и ход их отростков различаются у трохофор разных видов. Подавление синтеза серотонина в ранних нейронах у личинок полихет фармакологическими препаратами не влияло на развитие, в то время как усиление синтеза приводило к торможению развития и нарушению морфологии формирующейся нервной системы. Это свидетельствует об участии ранних периферических сенсорных нейронов в регуляции нейрогенеза и темпов развития.


41. 046748
Никитин В.П. Избирательное вовлечение рецепторов серотонина в механизмы синаптического облегчения у нейронов сенситизируемой улитки // Академический журнал Западной Сибири. 2018. Т. 14. № 2 (73). С. 62–65.

В ранее выполненных нами исследованиях обнаружено, что выработка ноцицептивной сенситизации у виноградных улиток или аппликации серотонина на ЦНС сопровождалась долговременным облегчением ответов интернейронов оборонительного поведения ЛПл1 и ППл1 на сенсорные раздражения, которое зависело от процессов трансляции и транскрипции. В настоящей работе изучена возможность избирательного вовлечения 5-HT1A субтипов рецепторов серотонина в механизмы индукции синаптического облегчения. Обнаружено, что выработка сенситизации во время подведения к нейронам антагониста этих рецепторов NAN-190 (1-(2-methoxiphenil)-4-[4-(2phthalimido)butyl]piperasine hydrobromide) вызывала подавление синаптического облегчения в ответах нейрона ЛПл1 на тактильные раздражения головы улитки. При этом синаптическое облегчение в ответах на химические раздражения головы и тактильные раздражения ноги развивалось так же, как у нейронов контрольных сенситизированных животных. Предположено, что у сенситизированных виноградных улиток б-HT1A-подобные рецепторы избирательно вовлечены в механизмы индукции пластичности синаптических "входов" интернейронов оборонительного поведения, опосредующих возбуждения от механорецепторов головы.


42. 009039
Разумовская М.А. и др. Модуляция ноопептом и пирацетамом никотиновых рецепторов нейронов виноградной улитки // Журнал высшей нервной деятельности им. И.П. Павлова. 2018. Т. 68. № 4. С. 537–548.

Ноотропные препараты – ноопепт и пирацетам изменяют амплитуду вызванного ацетилхолином входящего тока (АХ-тока) командных нейронов виноградной улитки. Оба соединения проявляют холинопозитивное действие. Дозовая кривая воздействия ноопепта – колоколообразная, а кривая доза-эффект в области физиологических концентраций пирацетама – монотонно возрастающая. Ноопепт усиливает АХ-ток при низких концентрациях (10–10–10–8 M), а пирацетам – при значительно больших концентрациях (начиная с 10–4 М). Величины максимальных холинопозитивных эффектов ноопепта и пирацетама (в области физиологических концентраций) одинаковы, в то время как концентрации ноотропных препаратов, при которых они достигаются, различаются на 7 порядков. Полумаксимальная концентраций (EC50) ноопепта (10–10 М), а EC50 пирацетама (10–3 М). Высказаны предположения о механизмах холинопозитивного действия этих препаратов.


43. 001785
Сидоров А.В. Неиромодуляторное действие пероксида водорода на центральные нейроны пищевой сети моллюска Lymnaea stagnalis // Журнал эволюционной биохимии и физиологии. 2017. Т. 53. № 6. С. 437–443.

Установлено, что пероксид водорода в концентрации 100 мкМ обладает выраженным корригирующим влиянием в отношении двигательных (клетки R/L B1-B4 кластеров) и модуляторных (клетки R/L CGC) нейронов пищевой сети моллюска Lymnaea stagnalis. Действие пероксида водорода выражается в изменении частоты импульсации, уровня мембранного потенциала и амплитуды потенциала действия указанных клеток. Наблюдаемые эффекты были обратимы и кратковременны, достигая максимума в течение 1 мин после нанесения препарата. Введение пероксида водорода в полость цефалопедального синуса не приводило к статистически достоверным изменениям показателей пищевого поведения моллюсков. Предполагается, что пероксид водорода может выступать в качестве быстрого нейромодулятора по отношению к нейронам центрального генератора пищевого ритма Lymnaea stagnalis.


44. 000477
Тимошенко А.Х. и др. Прижизненная микроскопия и количественный анализ Cа 2+-зависимых эффектов нейротрансмиттеров на ДНК нейронов моллюска // Биофизика. 2014. Т. 59. № 1. С. 118–126.

В условиях in vivo на нейронах Л-ППл1, окрашенных SYTO16 AM, при использовании числа и размеров микролокусов как показателей функционального состояния ДНК, исследованы эффекты серотонина и глутамата на пространственный паттерн флуоресценции ДНК в условиях действия ингибиторов потенциал-регулируемых Са 2+-каналов L-типа - нифедипина и верапа-мила, агониста рианодиновых рецепторов кофеина или мембрано-проникающего Са 2+-буфера -ВАРТА АМ. Обнаружено, что предва рительные подведения ВАРТА АМ, кофеина, нифедипина или верапамила подавляли изменения числа и размеров микролокусов в ядре нейронов улитки, вызываемых нейротрансмиттерами. Вместе с тем выявлено достоверное увеличение числа крупных микролокусов к 30-120 мин после начала аппликации нейротрансмиттеров в условиях действия нифедипина, верапамила или ВАРТА АМ, но не кофеина, что, по-видимому, отражает усиление процессов компактизации ДНК и конденсации хроматина в этот период. Полученные данные дают основание предполагать о наличии двух последовательных фаз трансформации ДНК нейротрансмиттерами: (1) - зависимой от внешнего Са 2+ фазы деконденсации хроматина и декомпактизации ДНК (продолжительностью около 1 ч и более) и (2) последующей (через 30 мин после начала аппликации нейротрансмиттеров) независимой от внешнего С а 2+ кофеин-чувствительной фазы, во время которой происходит компактизация ДНК, конденсация хроматина и восстановление исходного состояния ДНК.


45. 00193X
Флячинская Л.П., Райкова О.И. Исследование нервной системы педивелигера двустворчатого моллюска Mya arenaria // Зоологический журнал. 2014. Т. 93. № 3. С. 489.

Впервые методом иммуноцитохимии при двойном флюоресцентном окрашивании антителами к серотонину и FMRF-амиду исследовано строение нервной системы педивелигера двустворчатого моллюска Mya arenaria. Серотонин выявляется в нервных клетках апикального органа. Эти клетки соединяются многочисленными нервными отростками с клетками, расположенными по краю нервного кольца, которое охватывает парус и глотку. Кроме того, серотонин обнаружен в парных цереброплевральных и висцеропариетальных ганглиях и в формирующемся циркумпаллиальном нерве. FMRF-амид, ко-локализованный с серотонином, обнаружен в нервных клетках апикального органа, висцеропариетальном ганглии и цереброплевральном ганглиях. Только FMRF-амид выявлен в комиссурах, идущих от апикального органа к педальным ганглиям, педальных коннективах, клетках педального ганглия и педовисцеральных комиссурах. По нашему мнению, нервные клетки апикального органа не имеют преемственности с церебральным ганглием взрослого моллюска, поскольку цереброплевральный ганглий закладывается отдельно на стадии педивелигера.


46. Черетаев И.В., Коренюк И.И., Хусаинов Д.Р. Влияние ацетилсалицилата цинка на электрическую активность нейронов улитки // Геополитика и экогеодинамика регионов. 2013. Т. 9. № 2–2. С. 79–86.

В статье представлены результаты исследований влияния ацетилсалицилата цинка в концентрациях 5•10-5, 5•10-4 и 5•10-3 М на электрическую активность нейронов улитки Helix albescens Rossm. Показано, что в данных концентрациях это вещество оказываетактивационно-модулирующий эффект на параметры электрических потенциалов нейронов висцерального и правого париетального ганглиев. Выяснено, что механизм такого нейротропного действия ацетилсалицилата цинка связан с увеличением проницаемостинаружных мембран нейронов для Na+ и снижением или увеличением в зависимости от концентрации - для К+. Полученные данные позволяют рекомендовать ацетилсалицилат цинка к испытанию в качестве средства, стимулирующего нервную систему.


47. Шабанов П.Д., Вислобоков А.И. Модуляция электрической активности и ионных токов изолированных нейронов орексином А // Обзоры по клинической фармакологии и лекарственной терапии. 2013. Т. 11. № 4. С. 54–60.

Изучены изменения внутриклеточных потенциалов покоя (ПП) и действия (ПД) идентифицированных нейронов педальных и висцерального ганглиев ЦНС моллюска Planorbarius corneus, зарегистрированные с помощью внутриклеточных микроэлектродов, и ионных токов изолированных нейронов при фиксации потенциала под влиянием орексина А в концентрациях 1, 10, 100 и 1000 мкг/мл. Показано, что этот нейропептид модулирует электрическую активность нейронов: незначительно изменяет ПП, параметры ПД и частоту импульсной активности (ИА), что в целом можно оценивать как активирующее действие. В концентрации 1000 мкг/мл на фоне деполяризации наблюдали увеличение частоты ИА вплоть до подавления генерации ПД. В концентрации 1 мкг/мл орексин А увеличивал амплитуду медленного выходящего калиевого тока на 3-5 %, а в концентрациях 100 и более мкг/мл дозозависимо подавлял входящие ионные токи вплоть до 40 % при концентрации 1000 мкг/мл. При этом подавление натриевых токов было более сильным, чем кальциевых. Эффекты орексина А в высоких концентрациях можно считать неспецифическими и даже токсичными.


48. 010322
Шевелкин А.В., Никитин В.П., Шерстнев В.В. Нейротрансмиттеры избирательно изменяют содержание фосфорилированного гистона Н3 в идентифицированных нейронах виноградных улиток // Нейрохимия. 2016. Т. 33. № 3. С. 204–209.

Иммуногистохимическими методами исследовали влияние серотонина и глутамата, моделирующих нейронные эффекты сенситизации, на динамику содержания фосфорилированного (по серину 10) гистона Н3 (pHisH3) в ядрах командных нейронов оборонительного поведения Л-ППа2-3 виноградной улитки. Обнаружено, что одновременное подведение нейротрансмиттеров вызывает двухфазное изменение уровня pHisH3 в нейронах ППа2 – увеличение его содержания к 30 мин и снижение ниже исходного уровня к 3 ч, тогда как в нейронах ППа3 – уменьшение pHisH3 к 3 часам. В ЛПа2 и ЛПа3 изменения содержания pHisH3 не отмечены в течение 7 ч опыта. Динамика содержания pHisH3 в нейронах сопровождалась однонаправленными изменениями его колокализации с ДНК. Полученные результаты свидетельствуют об избирательных нейрон-специфических изменениях активности генома в ядрах командных нейронов в условиях клеточного моделирования простой формы обучения.


На главную К списку выставокАрхив выставок